problem
Given n non-negative integers representing an elevation map where the
width of each bar is 1, compute how much water it is able to trap
after raining.For example, Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
solution
可以先求出接满水后的面积,然后减去黑色的面积即为所求。
每个地方的注水高度等于min(左边最大高度,右边最大高度),而求出一个位置左右最大高度可以使用动态规划解法。
所以这个问题的时间复杂度为 O(n) , 空间复杂度为 O(n) ,
根据上面的思路可以改进为“两指针法”,初始时left指向0,right指向n-1,两者中高度相对较小的向中间移动(因为可以确保另一个的高度大于当前),同时将所在位置的高度增加至不小于上一个位置的高度。
其实这个解法的核心思想就在于通过让小的向中间移动,可以推算出左右的maxheight,从而知道当前位置注水后的高度。