poj 1659 Frogs’ Neighborhood(贪心Havel-Hakimi可构造简单图定理)
Time Limit: 5000ms Memory Limit: 65536kB
Description
未名湖附近共有n个大小湖泊L1, L2, …, Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 <= i <= n)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, …, xn,请你给出每两个湖泊之间的相连关系。
Input
第一行是测试数据的组数t(0 <= t <= 20)。每组数据包括两行,第一行是整数n(2 <= n <= 10),第二行是n个整数,x1, x2,…, xn(0 <= xi < n)。
Output
对输入的每组测试数据,如果不存在可能的相连关系,输出”NO”。否则输出”YES”,并用n * n的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。
Sample Input
3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1
Sample Output
YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0NO
YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
Source
POJ Monthly–2004.05.15 Alcyone@pku
本题一开始有模模糊糊看起来最优的解法的想法,后来发现这是图论中的一个定理。以下为摘录自http://www.cnblogs.com/jostree/p/4098136.html的证明:
给定一个非负整数序列D={d1,d2,…dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。
可图化的判定为:d1+d2+⋯+dn=0(mod2)d1+d2+⋯+dn=0(mod2)。
即把奇数度的点配对,剩下的变为自环。
可简单图化的判定,即Havel-Hakimi定理:
我们把序列D变换为非增序列,即d1≥d2≥⋯≥dn,则D可简单图化当且仅当D′=(d2−1,d3−1,⋯,d(d1+1)−1,d(d1+2),d(d1+3),⋯,dn)可简单图化。
证明:
充分性:若D′可简单图化,把原图GD中的最大度点与GD′中度最大的d1个点连边即可,图GD必为简单图。
必要性:若D可简单图化,设得到的简单图为DG。分两种情况考虑:
(a)若GD中存在边(v1,v2),(v1,v3),…,(v1,vd1+1)(v1,v2),(v1,v3),…,(v1,vd1+1),则删除这些边得简单图GD′,于是D′可简单图化为GD′
(b)若存在点vi,vj(i< j)且(v1,vi)不在GD中,但(v1,vj)在GD中。
这时,因为di≥dj,必存在k使得(vi,vk)在DG中但(vj,vk)不在GD中。这时我们可以令G′′=GD−{(vi,vk),(v1,vj)}+{(vk,vj),(v1,vi)}。G″的度序列仍为D,使用情况(a)处理。
证毕。
例如对于下图,我们删除两条打红X的边,添加两条虚线的边,即可转化为G′′
poj疑似有问题,评测无法AC
#define MAX_N 10
#include<stdio.h>
#include<stdlib.h>
#include<memory.h>
struct point_type
{
int code;
int deg;
};
int compare(const void* p1,const void* p2)
{
const point_type* e1=(const point_type*) p1;
const point_type* e2=(const point_type*) p2;
return e2->deg-e1->deg;
}
int cases,n,flag;
point_type point[MAX_N+1];
int matrix[MAX_N+1][MAX_N+1];
void test()
{
for (int i=1;i<=n;i++)
printf("%d(%d)",point[i].deg,point[i].code);
printf("\n");
}
int main()
{
//freopen("input.txt","r",stdin);
scanf("%d",&cases);
for (int loop=1;loop<=cases;loop++)
{
scanf("%d",&n);
flag=true;
for (int i=1;i<=n;i++)
point[i].code=i;
for (int i=1;i<=n;i++)
scanf("%d",&point[i].deg);
memset(matrix,0,sizeof(matrix));
for (int turn=1;turn<n;turn++)
{
qsort(point+turn,n-turn+1,sizeof(point_type),compare);
//test();
if (turn+point[turn].deg>n)
{
flag=false;
break;
}
for (int i=turn+1;i<=turn+point[turn].deg;i++)
{
matrix[point[turn].code][point[i].code]=
matrix[point[i].code][point[turn].code]=1;
point[i].deg--;
if (point[i].deg<0)
flag=false;
}
if (!flag)
break;
}
if (flag&&(point[n].deg==0))
{
printf("YES\n");
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
printf("%d%c",matrix[i][j],j==n?'\n':' ');
}
else
printf("NO\n");
if (loop!=cases)
printf("\n");
}
return 0;
}