一个二元二次有理式最值问题

一个二元二次有理式最值问题

问题

已知 a , b > 0 a,b>0 a,b>0,求 b 2 + 2 a + b + a 2 a b + 1 {b^2+2\over a+b}+{a^2\over ab+1} a+bb2+2+ab+1a2最小值。

我的解答

先利用权方和不等式放缩到对称形式
   原 式 = b 2 + 2 a + b + a 2 a b + 1 = b 2 a + b + a 2 a b + 1 + 2 a + b ≥ ( a + b ) 2 a + b + a b + 1 + 2 a + b 原式\\={b^2+2\over a+b}+{a^2\over ab+1}\\={b^2\over a+b}+{a^2\over ab+1}+{2\over a+b}\\ \ge {(a+b)^2\over a+b+ab+1}+{2\over a+b} =a+bb2+2+ab+1a2=a+bb2+ab+1a2+a+b2a+b+ab+1(a+b)2+a+b2
  
  再想办法化成 a + b a+b a+b的一元函数
   原 式 ≥ 上 式 = ( a + b ) 2 ( a + 1 ) ( b + 1 ) + 2 a + b ≥ ( a + b ) 2 ( a + 1 + b + 1 2 ) 2 + 2 a + b 原式\ge 上式\\={(a+b)^2\over (a+1)(b+1)}+{2\over a+b}\\ \ge {(a+b)^2\over ({a+1 + b+1\over 2})^2}+{2\over a+b} =(a+1)(b+1)(a+b)2+a+b2(2a+1+b+1)2(a+b)2+a+b2
  
  定义 2 t = a + b 2t=a+b 2t=a+b,再对一元函数求最值(其实求导就可以解决,但是这里直接放缩)
   原 式 ≥ 上 式 = 4 t 2 ( t + 1 ) 2 + 1 t = 4 t 3 + ( t + 1 ) 2 t ( t + 1 ) 2 = 2 t 3 − 1 + ( t + 1 ) 2 + ( t 3 + t 3 + 1 ) t ( t + 1 ) 2 ≥ 2 t 3 − 1 + ( t + 1 ) 2 + 3 t 2 t ( t + 1 ) 2 = 2 t 3 + 4 t 2 + 2 t t ( t + 1 ) 2 = 2 原式\ge 上式\\={4t^2\over (t+1)^2}+{1\over t}\\={4t^3+(t+1)^2\over t(t+1)^2}\\={2t^3-1+(t+1)^2+(t^3+t^3+1)\over t(t+1)^2}\\ \ge {2t^3-1+(t+1)^2+3t^2\over t(t+1)^2}\\={2t^3+4t^2+2t\over t(t+1)^2}\\=2 =(t+1)24t2+t1=t(t+1)24t3+(t+1)2=t(t+1)22t31+(t+1)2+(t3+t3+1)t(t+1)22t31+(t+1)2+3t2=t(t+1)22t3+4t2+2t=2
  
  以上的每一步放缩的等号成立条件分别是
   a = b a b + 1 = a + b a + 1 = b + 1 a + b = 2 t = 2 a=b\\ab+1=a+b\\a+1=b+1\\a+b=2t=2 a=bab+1=a+ba+1=b+1a+b=2t=2
  即等号成立条件是 a = b = 1 a=b=1 a=b=1,等号可以取到。
  
  故原式最小值为2

一个优雅的解答

因为
   ( a 2 + 1 ) ( b 2 + 1 ) ≥ ( a b + 1 ) 2 ( a 2 + 1 ) ( 1 + b 2 ) ≥ ( a + b ) 2 (a^2+1)(b^2+1)\ge(ab+1)^2\\ (a^2+1)(1+b^2)\ge(a+b)^2 (a2+1)(b2+1)(ab+1)2(a2+1)(1+b2)(a+b)2
  
  所以 
   b 2 + 2 a + b + a 2 a b + 1 ≥ b 2 + 2 ( a 2 + 1 ) ( b 2 + 1 ) + a 2 ( a 2 + 1 ) ( b 2 + 1 ) ≥ ( a 2 + 1 ) + ( b 2 + 1 ) ( a 2 + 1 ) ( b 2 + 1 ) ≥ 2 {b^2+2\over a+b}+{a^2\over ab+1}\ge{b^2+2\over \sqrt{(a^2+1)(b^2+1)}}+{a^2\over \sqrt{(a^2+1)(b^2+1)}}\ge{(a^2+1)+(b^2+1)\over \sqrt{(a^2+1)(b^2+1)}}\ge 2 a+bb2+2+ab+1a2(a2+1)(b2+1) b2+2+(a2+1)(b2+1) a2(a2+1)(b2+1) (a2+1)+(b2+1)2
  
  等号成立条件是 a = b = 1 a=b=1 a=b=1,等号可以取到。

故原式最小值为2

在MATLAB中,可以使用优化工具箱中的函数来求解二元一次函数的最值。以下是一种常见的方法: 1. 定义二元一次函数:首先,需要定义你要求解最值二元一次函数。假设函数为 f(x, y) = ax^2 + by^2 + cx + dy + e,其中 a、b、c、d、e 是函数的系数。 2. 创建优化问题:使用 `optimproblem` 函数创建一个优化问题对象。例如,可以使用以下代码创建一个最小化问题: ```matlab problem = optimproblem('Minimize'); ``` 3. 添加变量:使用 `optimvar` 函数添加变量。对于二元一次函数,需要添加两个变量 x 和 y。假设 x 和 y 的取值范围分别为 [x_min, x_max] 和 [y_min, y_max]。 ```matlab x = optimvar('x', [x_min, x_max]); y = optimvar('y', [y_min, y_max]); ``` 4. 添加约束:根据需要,可以添加额外的约束条件。例如,如果要求 x 和 y 的和等于某个常数 k,可以使用以下代码添加约束: ```matlab constraint = x + y == k; problem.Constraints.constraint = constraint; ``` 5. 添加目标函数:使用 `addObjective` 函数将目标函数添加到问题中。对于最小化问题,可以使用以下代码添加目标函数: ```matlab objective = a*x^2 + b*y^2 + c*x + d*y + e; problem.Objective = objective; ``` 6. 求解问题:使用 `solve` 函数求解问题,并获取最优解。 ```matlab [solution, fval] = solve(problem); ``` 其中,`solution` 是最优解的结构体,包含了变量的取值,`fval` 是最优解对应的函数值。 以上是使用优化工具箱来求解二元一次函数最值的一种方法。当然,还有其他方法可以实现相同的功能。如果你对其他方法感兴趣,可以提出相关问题,我会尽力回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值