题意:吃鸡的游戏模式。会给你三个参数n,R,r分别代表n个房子,初始安全区的半径R,和缩小后的安全区r。然后输入n个房子的坐标。请你算出最有可能成为安全区的房子的编号。初始安全区的圆心坐标为(0,0)。
赛场上没有想出来正确的解法,想的是以房子为圆心,缩小后的安全区为半径做园,那么和初始安全区的相交面积为每个点成为安全区房子的概率。场上没有没写出来。也不知道这个思路是否正确。后来听一块去的学长说了正确的解法。
思路:当房子到圆心的距离dis,满足dis+R<=2*r的时,那么这些房子一定会成为安全区房子。如果输入的房子没有满足上面的条件,那么按照与圆心的距离输出最小值。
需注意精度问题。
代码如下:
#include <bits/stdc++.h>
using namespace std;
double eps=1e-8;
struct Point{
double x,y,dis;
}a[5050];
int ans[5050];
int main()
{
int T,n;
double R,r;
scanf("%d",&T);
while(T--)
{
scanf("%d%lf%lf",&n,&R,&r);
double ansr;
if(R>=2*r)
ansr=R-2*r;
else ansr=2*r-R;
int j=0,flag=0;
double maxn=9999999;
for(int i=0;i<n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
a[i].dis=sqrt(a[i].x*a[i].x+a[i].y*a[i].y);
if(a[i].dis<maxn)maxn=a[i].dis;
if(a[i].dis<=ansr)
{
flag=1;ans[j++]=i+1;
}
}
if(flag)
{
printf("%d\n%d",j,ans[0]);
for(int i=1;i<j;i++)
printf(" %d",ans[i]);
printf("\n");
}
else
{
double anss=0;
int j=0;
for(int i=0;i<n;i++)
{
if(fabs(a[i].dis-maxn)<eps)
ans[j++]=i+1;
}
printf("%d\n%d",j,ans[0]);
for(int i=1;i<j;i++)
printf(" %d",ans[i]);
printf("\n");
}
}
return 0;
}