常见的神经网络权重文件格式及其详细说明

常见的神经网络权重文件格式及其详细说明的表格:

扩展名所属框架/工具如何生成表示内容使用方法注意事项
.pt.pthPyTorchtorch.save(model.state_dict(), "model.pt")PyTorch模型的状态字典(权重和参数)或整个模型加载方式:model.load_state_dict(torch.load("model.pt"))如果保存整个模型(含结构和权重),可能导致跨设备加载问题。pth通常用于旧版本。
.h5.hdf5Keras/TensorFlowmodel.save("model.h5")完整的Keras模型(含结构、权重和优化器状态)加载方式:keras.models.load_model("model.h5")HDF5格式依赖h5py库;部分自定义层可能需要手动定义。
.pkl.picklePython通用(如scikit-learn)pickle.dump(model, open("model.pkl", "wb"))序列化的Python对象(如模型参数或全量模型)加载方式:model = pickle.load(open("model.pkl", "rb"))存在安全风险(反序列化恶意代码);建议仅在可信来源使用。
.ckptTensorFlow使用tf.train.CheckpointModelCheckpoint回调TensorFlow检查点文件(模型参数、优化器状态等)恢复训练:model.load_weights("model.ckpt")检查点文件包含多个文件(如.index.data-xxx等),需一起保留。
.pbTensorFlow(SavedModel)tf.saved_model.save(model, "model_dir")TensorFlow的计算图结构和权重(Protocol Buffers格式)加载方式:tf.keras.models.load_model("model_dir") 或 tf.saved_model.load("model_dir")跨语言兼容性好,支持C++/Java等语言调用。
.onnxONNX(跨框架标准)torch.onnx.export(model, input, "model.onnx")跨框架的标准化模型(含结构和权重)加载工具:ONNX Runtime(ort.InferenceSession("model.onnx"))或其他框架的转换工具需验证框架支持的操作;可能需调整算子兼容性。
.weightsDarknet/YOLODarknet训练时自动生成(如YOLOv3的yolov3.weightsDarknet模型的权重参数,需配合配置文件(.cfg)使用加载方式:darknet.load_net("yolov3.cfg", "yolov3.weights")无模型结构信息,必须与对应的.cfg文件匹配使用。
.bin.safetensorsHugging Face Transformers库model.save_pretrained("dir")会生成pytorch_model.bin模型权重文件,通常与配置文件(config.json)配合使用加载方式:model.from_pretrained("dir").safetensors是更安全的格式(替代.bin),避免恶意代码注入。
.tfliteTensorFlow Lite转换工具:tf.lite.TFLiteConverter.from_saved_model("model_dir").convert()轻量化模型,适用于移动端/嵌入式设备移动端推理:使用TensorFlow Lite的Interpreter API加载。模型可能经过量化(精度降低但体积减小)。
.paramsMXNetnet.save_parameters("model.params")MXNet模型的权重参数加载方式:net.load_parameters("model.params")需预先定义网络结构再加载参数。
.joblibscikit-learnjoblib.dump(model, "model.joblib")序列化后的scikit-learn模型(适用于大文件)加载方式:model = joblib.load("model.joblib")pickle更高效,但主要服务于传统机器学习模型,少用于神经网络。

使用场景总结

  • 训练/推理用途.pt(PyTorch)、.h5(Keras)、.ckpt(TensorFlow)常用于训练过程中的保存与恢复。
  • 跨框架部署.onnx适合不同框架间的模型转换;.pb(TensorFlow)适合生产环境部署。
  • 嵌入式/移动端.tflite针对移动设备优化。
  • 安全性优先:优先选择.safetensors替代.pkl.bin
  • 协作与共享.weights+.cfg(YOLO)、saved_model(目录)包含完整信息,便于团队协作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值