机器学习第二周(多元线性回归)

文章介绍了多元线性回归的概念,从单一特征的线性回归模型扩展到包含多个特征的情况,提出了包含多个特征的假设函数形式,并展示了代价函数和梯度下降在多元线性回归中的应用,讨论了特征数量增加对模型复杂性和训练效率的影响。
摘要由CSDN通过智能技术生成

多元线性回归的引入

单特征
之前我们介绍过房价预测问题,当时我们只使用了一个特征:房子的大小,来对房价进行预测,并且我们得到了该线性回归模型的假设函数: h θ ( x ) = θ 0 + θ 1 x h_\theta(x)=\theta_0+\theta_1x hθ(x)=θ0+θ1x,如上图所示。但是在实际问题中,能够决定房价的因素(特征 / 变量)肯定不只有一个,所以我们要将之前介绍的线性回归模型推广到更一般的情况,即多元线性回归模型,它更符合实际情况。
多特征
如上图所示,我们在原来的基础上,添加了三个特征 / 变量来描述房子,即房间卧室的数量、房屋的楼层以及房子的年龄。
符号描述
需要注意的是我们现在开始使用 n n n 来表示特征的数量,上述问题中,显然 n = 4 n=4 n=4;使用 x i x^i xi来表示第 i i i 个训练样本的输入特征值,并不是表示 x x x i i i 次方,对应于上述问题,即表格中的第 i i i 行,比如,当 i = 1 i=1 i=1 时,则有 x 1 = [ 2104 , 5 , 1 , 45 ] x^1=[2104,5,1,45] x1=[2104,5,1,45](注: P r i c e Price Price为房价真实值,不属于输入特征),习惯上,我们更愿意把 x 1 x^1 x1 表示成一个向量的形式,即 x 1 = [ 2104 5 1 45 ] x^1=\begin{bmatrix} 2104\\5\\1\\45 \end{bmatrix} x1= 21045145 ,很显然, x 1 x^1 x1是一个 4 4 4维向量,更一般来说, x i x^i xi会是一个 n n n维向量;使用 x j i x^i_j xji来表示第 i i i 个训练样本中第 j j j 个特征量的值,比如,对应到上述问题,就有 x 3 1 = 1 x^1_3=1 x31=1,就相当于索引向量 x 1 x^1 x1 中的第 3 3 3 个元素。

多元线性回归的假设函数

那么,我们现在的假设函数会是什么形式呢?

之前我们线性回归模型的假设函数是 h θ ( x ) = θ 0 + θ 1 x h_\theta(x)=\theta_0+\theta_1x hθ(x)=θ0+θ1x,现在我们考虑多个因素对房价带来的影响,那么,对应的假设函数应该改写成 h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + … + θ n x n h_\theta(x)=\theta_0+\theta_1x_1+\theta_2x_2+…+\theta_nx_n hθ(x)=θ0+θ1x1+θ2x2++θnxn,其中, x i x_i xi表示第 i i i 个输入特征值,为了表示方便,我们会再添加一个输入特征值 x 0 x_0 x0,并且令 x 0 = 1 x_0=1 x0=1,即对于每一组训练样本,都有 x 0 i = 1 x^i_0=1 x0i=1,现在,我们再将特征和参数表示成向量的形式,则有 x = [ x 0 x 1 x 2 … x n ] ∈ R n + 1 x=\begin{bmatrix} x_0\\x_1\\x_2\\…\\x_n \end{bmatrix}\in\R^{n+1} x= x0x1x2xn Rn+1 θ = [ θ 0 θ 1 θ 2 … θ n ] ∈ R n + 1 \theta=\begin{bmatrix} \theta_0\\\theta_1\\\theta_2\\…\\\theta_n \end{bmatrix}\in\R^{n+1} θ= θ0θ1θ2θn Rn+1

现在我们可以将假设函数表示为 h θ ( x ) = θ T ⋅ x = [ θ 0 , θ 1 , … , θ n ] ⋅ [ x 0 x 1 x 2 … x n ] = θ 0 + θ 1 x 1 + θ 2 x 2 + … + θ n x n h_\theta(x)=\theta^T \cdot x=[\theta_0,\theta_1,…,\theta_n] \cdot \begin{bmatrix} x_0\\x_1\\x_2\\…\\x_n \end{bmatrix}=\theta_0+\theta_1x_1+\theta_2x_2+…+\theta_nx_n hθ(x)=θTx=[θ0,θ1,,θn] x0x1x2xn =θ0+θ1x1+θ2x2++θnxn,这就是多特征量情况下假设函数的形式,也就是所谓的多元线性回归。

多元线性回归的代价函数与梯度下降

多元线性回归的代价函数
上图所示是我们多元线性回归中的一些表达式,其中代价函数 J ( θ 0 , θ 1 , … , θ n ) = J(\theta_0,\theta_1,…,\theta_n)= J(θ0,θ1,,θn)=   1 2 m \,\Large1\over {2m} 2m1 ∑ i = 1 m \large\sum_{i=1}^m i=1m ( h θ ( x i ) − y i ) 2 (h_\theta(x^i)-y^i)^2 (hθ(xi)yi)2与之前的代价函数表达式一致,只不过参数的数量增加到了 n n n 个,当然,上面的表达式中,我们也可以把 θ 0 , θ 1 , … , θ n \theta_0,\theta_1,…,\theta_n θ0,θ1,,θn写成向量 θ \theta θ 的形式,使表达式看起来更加简洁,即 J ( θ ) = J(\theta)= J(θ)=   1 2 m \,\Large1\over {2m} 2m1 ∑ i = 1 m \large\sum_{i=1}^m i=1m ( h θ ( x i ) − y i ) 2 (h_\theta(x^i)-y^i)^2 (hθ(xi)yi)2

更新梯度下降算法

多元线性回归的梯度下降法
上图就是多元线性回归中梯度下降的样子。

在这里插入图片描述
上图是之前只有一个特征时的梯度下降算法对应的参数更新方程,即 n = 1 n=1 n=1
在这里插入图片描述
现在,我们将梯度下降算法更新,即将参数更新方程推广到更加一般的情况,即 n ≥ 1 n\ge1 n1时,对于每一个训练样本 x i x^i xi,我们在更新参数 θ j \theta_j θj时,对应偏导数的在括号外的乘积项应该变为 x j i x^i_j xji,即第 i i i 个训练样本中第 j j j 个特征量的值。

现在,我们介绍完了多元线性回归模型,很显然,相比于单特征的情况,特征数量的增多会使得模型变得复杂,同样也会降低我们训练模型的效率,比如在进行梯度下降时,所以之后我们会来谈谈如何提高多元梯度下降收敛的速度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PL_涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值