【题目描述】
某个地区有n(n<=1000)个犯罪团伙,当地警方按照他们的危险程度由高到低给他们编号为1-n,他们有些团伙之间有直接联系,但是任意两个团伙都可以通过直接或间接的方式联系,这样这里就形成了一个庞大的犯罪集团,犯罪集团的危险程度由集团内的犯罪团伙数量唯一确定,而与单个犯罪团伙的危险程度无关(该犯罪集团的危险程度为n)。现在当地警方希望花尽量少的时间(即打击掉尽量少的团伙),使得庞大的犯罪集团分离成若干个较小的集团,并且他们中最大的一个的危险程度不超过n/2。为达到最好的效果,他们将按顺序打击掉编号1到k的犯罪团伙,请编程求出k的最小值。
【输入】
第一行一个正整数n。接下来的n行每行有若干个正整数,第一个整数表示该行除第一个外还有多少个整数,若第i行存在正整数k,表示i,k两个团伙可以直接联系。
【输出】
一个正整数,为k的最小值。
【输入样例】
7
2 2 5
3 1 3 4
2 2 4
2 2 3
3 1 6 7
2 5 7
2 5 6
【输出样例】
1
【提示】
【提示】
输出1(打击掉犯罪团伙)
【思路】由于打击顺序从1开始,因此只需要把边按照它所连接的两个点中小值大的排在前面,然后从前往后遍历各条边,再逐渐建立并查集,且每次遍历到两个点中小值比上一条边的两个点中小值小的时候就检测一下当前是否不符合要求,不符合则输出边界并返回,然后注意如果只要删除一个的还要在所有边遍历完以后再检测一遍,如果不符合则输出1,还符合则输出0,时间复杂度O(n^2log(n^2))。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1005;
int fa[maxn],rk[maxn];
void make(){iota(fa,fa+maxn,0);for(int i=0;i<maxn;i++)rk[i]=1;}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
bool same(int a,int b){a=find(a);b=find(b);return a==b;}
void unite(int a,int b){if(same(a,b))return;a=find(a);b=find(b);if(rk[a]<rk[b]){fa[a]=b;rk[b]+=rk[a];}else{fa[b]=a;rk[a]+=rk[b];}}
struct edge{
int u,v;
bool operator<(const edge &a)const
{
return min(u,v)>min(a.u,a.v);
}
}arr[maxn*maxn];
int main()
{
ios_base::sync_with_stdio(false),cin.tie(nullptr);
make();
int n,cnt=0;
cin>>n;
for(int i=1;i<=n;i++)
{
int num;
cin>>num;
while(num--)
{
int j;
cin>>j;
arr[cnt++]={i,j};
}
}
sort(arr,arr+cnt);
int d=n+1;//边界
for(int i=0;i<cnt;i++)
{
edge &a=arr[i];
if(min(a.u,a.v)<d)
{
//判断是否符合条件,不符合则输出d+1
for(int i=1;i<=n;i++)
{
if(fa[i]==i&&rk[i]>n/2)
{
cout<<d;
return 0;
}
}
d=min(a.u,a.v);
}
unite(a.u,a.v);
}
for(int i=1;i<=n;i++)
{
if(fa[i]==i&&rk[i]>n/2)
{
cout<<d;
return 0;
}
}
cout<<0;
return 0;
}