打击犯罪(black)

无意中发现的题目,比较有创意 中文题目直接复制粘贴原题目了

【题目描述】
某个地区有n(n≤1000)个犯罪团伙,当地警方按照他们的危险程度由高到低给他们编号为1-n,他们有些团伙之间有直接联系,但是任意两个团伙都可以通过直接或间接的方式联系,这样这里就形成了一个庞大的犯罪集团,犯罪集团的危险程度由集团内的犯罪团伙数量唯一确定,而与单个犯罪团伙的危险程度无关(该犯罪集团的危险程度为n)。现在当地警方希望花尽量少的时间(即打击掉尽量少的团伙),使得庞大的犯罪集团分离成若干个较小的集团,并且他们中最大的一个的危险程度不超过n/2。为达到最好的效果,他们将按顺序打击掉编号1到k的犯罪团伙,请编程求出k的最小值。

【输入】
第一行一个正整数n。接下来的n行每行有若干个正整数,第一个整数表示该行除第一个外还有多少个整数,若第i行存在正整数k,表示i,k两个团伙可以直接联系。

【输出】
一个正整数,为k的最小值。

【输入样例】
7
2 2 5
3 1 3 4
2 2 4
2 2 3
3 1 6 7
2 5 7
2 5 6
【输出样例】
1
【提示】
【提示】

输出1(打击掉犯罪团伙)
 

这题思路很清奇 需要我们反向插入边来判断是否符合条件,开始以为是找关节点,后来发现需要打击连续的犯罪团伙,就不像是关节点,记录邻接表,然后从 n 开始反向构造图,加入图里的边都是最后剩下的边,如果剩下的边加起来满足了题目中的条件,那么就算是完成了

 

 

 

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 2000;
int n,m;
int pre[maxn];
void init()
{
    for(int i=1;i<=n;i++)
        pre[i]=i;
}
int findd(int x)
{
    int r=x;
    while(r!=pre[r])
        r=pre[r];
    int temp=x;
    while(temp!=pre[temp])
    {
        pre[x]=r;
        temp=pre[temp];
    }
    return r;
}
int c[maxn],k[maxn];
int ed[maxn][maxn];
int main()
{
    cin>>n;
    init();
    for(int i=1;i<=n;i++)
        c[i]=1;
    for(int i=1;i<=n;i++)
    {
        cin>>k[i];
        for(int j=1;j<=k[i];j++)
        {
            int temp;
            cin>>temp;
            ed[i][j]=temp;
        }
    }
    for (int i = n;i >= 1;i--)
    {
		for (int j = 1;j <= k[i];j++)
		{
			if (ed[i][j] > i)
            {
				int xx = findd(i);
				int yy = findd(ed[i][j]);
				if (xx != yy)
                {
					pre[yy] = xx;
					c[xx] += c[yy];
					if (c[i] > (n >> 1))
                    {
						printf("%d\n", i);
						return 0;
					}
				}

			}
		}
    }
    return 0;
}

 

根据引用\[1\]的描述,这个问题是关于打击犯罪团伙的最优策略的问题。警方希望通过打击尽量少的团伙,将庞大的犯罪集团分离成较小的集团,并且其中最大的一个集团的危险程度不超过总团伙数量的一半。 根据引用\[2\]中的代码,这是一个使用并查集算法来解决的问题。算法的思路是,首先将每个犯罪团伙看作一个独立的集合,然后根据团伙之间的联系逐步合并集合,直到最大的集合的危险程度不超过总团伙数量的一半。 具体的实现过程如下: 1. 初始化每个犯罪团伙为一个独立的集合,并记录每个集合的大小。 2. 按照给定的顺序依次打击犯罪团伙,每次打击后更新集合的合并关系和大小。 3. 在每次打击后,检查最大的集合的危险程度是否超过总团伙数量的一半,如果超过则输出当前打击的团伙编号,否则继续下一轮打击。 4. 重复步骤3直到所有团伙都被打击完毕。 根据代码中的实现,最后输出的结果即为k的最小值,即最少需要打击的团伙数量。 请注意,这是一个编程问题,需要使用编程语言来实现算法。如果您需要具体的代码实现,请参考引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [信奥一本通1386:打击犯罪(black)](https://blog.csdn.net/PONY_10001/article/details/126470578)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [1386:打击犯罪(black)](https://blog.csdn.net/qq_42552468/article/details/91347540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值