一、激光散射(衍射)技术应用介绍
激光散射(衍射)法广泛应用于数百纳米至几毫米大小的粒度测量技术。
通过测量激光束穿过分散颗粒样品时不同角度的散射光强度,对颗粒粒度分布进行测定。
小颗粒对大角度散射光强贡献大,大颗粒对小角度的散射光强贡献大。然后对角度散射光强数据进行分析,使用米氏光散射理论,对形成散射图样的颗粒粒度进行计算,进而得到颗粒的粒度分布。
二、光学特性
激光散射(衍射)采用米氏光散射理论计算粒度分布,假设为等体积球模型,米氏理论要求了解待测样品的光学特性(折射指数与虚部吸收率)以及分散剂的折射指数。通常,分散剂的光学特性可以相对较容易的从发布的数据中找到,而且,许多现代化仪器还配有包含了常见分散剂的内置数据库。对于光学特性未知的样品而言,用户可以对其进行测量,也可采用迭代方式进行预估,该方式以样品的模型化数据及收集的实际数据之间的拟合优度位基础。
简化的方法是使用夫朗禾费近似法,该方法无需了解样品的光学特性。可提供大颗粒的准确结果,然而不适用于颗粒小于50um时的场景。
1、光的散射
光的散射是指光线通过不均匀介质时,一部分偏离原来传播方向的现象。如果光入射的是均匀介质,那么光只会发生反射、折射,不会产生散射。
光的散射有很多种,例如:米氏散射、瑞利散射、拉曼散射、布里渊散射、康普顿散射等。按照从光频率是否改变,可以将上述几种散射方式分为弹性散射和非弹性散射。
弹性散射:光的波长(频率)不会发生改变,eg:米氏散射、瑞利散射等;
非弹性散射:散射前后光的波长发生了改变,eg:拉曼散射、布里渊散射、康普顿散射等;
2、瑞利散射
满足条件:微粒尺度远小于入射光波长,一般要求小于波长的1/10,且各个方向的散射强度不一致,该强度与波长的4次方成反比;
瑞利认为,一束光射入散射介质后,将引起散射介质中每个分子作强迫振动。这些作强迫振动的分子将成为新的点光源,向外辐射次级波。这些次级波与入射波叠加后的合成波就是在散射介质中传播的折射波。对均匀散射介质来说,这些次波是相干的,其干涉的结果,只有沿折射光方向的合成波才加强,其余方向皆因干涉而抵消,这就是光的折射。如果散射介质出现不均匀性,破坏了散射体之间的位置关系,各次波不再是相干的,这时合成波折射方向因干涉而加强的效果也随之消失,也就是说其它方向也会有光传播,这就是散射。
瑞利散射的计算公式为:
日常现象:(1)天空呈现蓝色,是由于大气分子将太阳光散射了,由于瑞利散射的强度与波长的4次方成反比,故波长越短,散射强度越强,所以蓝紫光被散射的最厉害,天空呈现蔚蓝色(紫光被大气吸收,且人眼对紫光不敏感);(2)海水的蓝色是由于水分子将太阳光进行散射造成的。
3、米氏散射
满足条件:颗粒直径达到光波长量级(λ)甚至达到10λ,米氏散射的强度与光波长的2次方成反比,且随着颗粒的增大,散射强度随波长变化的起伏变弱。
Mie散射1908年G. Mie[7]在电磁理论的基础上,对平面单色波被位于均匀散射介质中具有任意直径及任意成分的均匀球体的散射得出了严格数学解。根据Mie散射理论 [8],介质中的微小颗粒对入射光的散射特性与散射颗粒的粒径大小、相对折射率、入射光的光强、波长和偏振度以及相对观察方向(散射角)有关。激光粒度仪正是通过对散射光的不同物理量进行测量与计算,进而得到粒径的大小、分布及颗粒的浓度等参数。
4、Fraunhofer衍射
光的衍射是光波在传播过程中遇到障碍物后,偏离其原来的传播方向弯入障碍物的几何影区内,并在障碍物后的观察屏上呈现光强分布的不均匀现象。光源和观察屏距离衍射物都相当于无限远时的衍射即为Fraunhofer衍射,其衍射场可在透镜的后焦面上观察到。
5、Fraunhofer 衍射和Mie散射的比较
理论分析认为,当颗粒与波长相比大很多时,Fraunhofer 衍射模型本身有较高的精确性,可看作是Mie 散射的一种近似。
由于Mie理论计算复杂和计算机不易执行,早期的激光粒度仪一般都工作于Fraunhofer 衍射原理,随着科学技术和计算机的发展,仪器制造商先是在亚微米范围内采用Mie理论,后来又在全范围内采用,称为“全Mie理论”。原先以为大颗粒的测量可以使用Fraunhofer 衍射理论,但是置于光场中的大颗粒除了具有衍射作用外,还有由几何光学的反射和折射引起的几何散射作用,后者就强度而言远小于前者,但总的能量不相上下。用衍射理论计算光能分布显然忽视了几何散射,因而有较大误差,而Mie散射理论是描述颗粒光散射的严格理论。有关专家认为,对非吸收性颗粒,用Fraunhofer 衍射理论分析散射光能时,将会“无中生有”地认为在仪器的测量下限附近有小颗粒峰(如果仪器可以进行多峰分析) 。有文献通过Fraunhofer 衍射和严格Mie散射的数值计算结果的对比指出,Fraunhofer 衍射适用的条件为:仪器测量下限大于3μm,或被测颗粒是吸收型且粒径大于1μm的。当仪器测量下限小于1μm,或者用测量下限小于3μm的仪器去测量远大于1μm的颗粒时,都应该采用Mie理论。另外,颗粒的折射率对测量结果也有较大的影响。对吸收性颗粒而言,Fraunhofer 衍射结果同Mie散射结果基本一致。而对于非吸收性颗粒,两者就有一定的偏差。有文献认为,当颗粒的相对折射率的虚部η<0.03或 η>3时,必须用Mie理论来计算系数矩阵。