HJ76 尼科彻斯定理

题目:

HJ76 尼科彻斯定理

题解:

m个连续奇数之和,所以我们只要求出连续奇数的第一位就能以此枚举所有奇数,连续奇数是一个等差数列。

S = m^3, n = m, d = 2    ===>  a1 = m^2 - (m-1)

import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);

        int m = in.nextInt();
        in.nextLine();

        int sum = m * m * m;
        int a1 = sum / m - (m-1);
        StringBuffer sb = new StringBuffer();
        sb.append(a1);
        for (int i = 1; i < m; i++) {
            a1+=2;
            sb.append("+");
            sb.append(a1);   
        }
    
        System.out.println(sb.toString());
    }
}

时间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值