检索模型(余弦相似度)

本文解析了如何使用余弦相似度计算向量间的相似度,并通过一个具体的查询词向量与文档向量的实例演示了如何得到排名。重点讲解了如何实现rankedlist排序,最终结果展示了第2、4、1和3号文档的相似度最高。
摘要由CSDN通过智能技术生成

概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

计算题实例

在这里插入图片描述


将查询词向量(0,1,0,0,0,0,1,0)与右边各个(4列)文档的向量分别求余弦相似度,按照结果排序,最终ranked list为2,4,1,3
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值