范数计算(一范数、二范数、无穷范数)

这篇博客探讨了多维数据的几种度量方式,包括0范数(非零元素个数)、1范数(曼哈顿距离)、2范数(欧氏距离)以及无穷范数(最大值)。这些概念在数据分析和机器学习中扮演着重要角色,理解它们对于优化算法和计算距离有着基础性的影响。
摘要由CSDN通过智能技术生成

概念

多维数据度量方式:0范数,向量中非零元素的个数。
1范数(曼哈顿距离、城市距离):为绝对值之和。
2范数(欧氏距离):就是通常意义上的模。
无穷范数,就是取向量的最大值。
在这里插入图片描述
在这里插入图片描述

计算题实例

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值