CVPR 2024 | Retrieval-Augmented Open-Vocabulary Object Detection

本文介绍了一种名为RALF的方法,它通过检索和增强损失函数以及视觉特征,显著提高了目标检测器对新类别对象的识别性能。在COCO和LVIS数据集上,新类别下的APN50和maskAPr分别提升了3.4%和3.6%。
摘要由CSDN通过智能技术生成

CVPR 2024 - Retrieval-Augmented Open-Vocabulary Object Detection

本文提出了一种新的开放词汇目标检测方法 Retrieval-Augmented Losses and visual Features (RALF)。RALF 通过从大型词汇库中检索词汇并增强损失函数和视觉特征来提高检测器对新类别的泛化能力。

该方法由两个部分组成:检索增强损失(RAL)和检索增强视觉特征(RAF)。

RALRAF
在这里插入图片描述在这里插入图片描述
  • RAL 通过使用与负词汇库的语义相似性的距离来优化嵌入空间。通过从大型词汇库中,按照语义相似性检索与真实类别标签相关的难负词汇和易负词汇。然后,RAL 使用这些词汇和真实框嵌入来定义难负损失和易负损失。
  • RAF 则利用大型语言模型(LLM)生成关于大型词汇库的描述,并从中提取有关目标的详细信息,以增强视觉特征。RAF 首先在离线阶段从目标提案中生成视觉特征。然后,在推理阶段,RAF 使用概念检索器和增强器从概念存储库中检索相关概念,并使用这些概念来增强视觉特征。

通过实验,作者证明了 RALF 在 COCO 和 LVIS 基准数据集上的有效性。特别是在 COCO 数据集的新类别上,APN50 提高了 3.4%,在 LVIS 数据集的新类别上,mask APr 提高了 3.6%。 未命名

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值