CF1601E Phys Ed Online题解

CF1601E Phys Ed Online 题解

原题链接

题解

本题考察方面很多,主要用到单调队列,单调栈,st表,思维难度也比较高

首先注意到,一张票只能持续k天,那么就可以把询问分成以k为基数的t段,最后一段不管是否满了,都需要一张票,所以当t相同的情况下,r大一点,小一点无关紧要,直接进1即可,比如k=2,l=1,那么r=5和r=6的结果是相同的

注意到这点之后,我们需要一个 f [ i ] f[i] f[i]数组,表示从第 i i i天开始玩(且不考虑必须在第一天买票),一直到最后一天需要花的钱数,这是一个后缀和。但是在转移的时候遇到问题了,我们无法确定当前这一段买哪一张票最划算,于是我们还需要求出另一个数组, b [ i ] b[i] b[i],表示 [ i − k , i ] [i-k,i] [ik,i]这几天的最便宜的门票价格(此处用单调队列处理),这样我们就能进行转移了。
转移时需要考虑两种情况,
一种是在当前这个位置直接把票全买了是最便宜的,也就是当前位置是该区间最小值,就直接计算即可
第二种是当前位置不是最小值,那么往后找到第一个最小值,(这里用单调栈找)从它那里转移过来即可
f [ j ] = 1 l l ∗ b [ j ] ∗ ( i + k − j ) / k f[j]=1ll*b[j]*(i+k-j)/k f[j]=1llb[j](i+kj)/k
f [ j ] = f [ n x t ] + 1 l l ∗ b [ j ] ∗ ( n x t − j ) / k f[j]=f[nxt]+1ll*b[j]*(nxt-j)/k f[j]=f[nxt]+1llb[j](nxtj)/k
里面的关于k的运算请自行体会

有了这个数组,还没完,我们来关注问题
给出 [ l , r ] [l,r] [l,r],第一天的门票必须要买,也就是 a [ l ] a[l] a[l]一定在最后的答案中,那再运用贪心的思想,如果这段区间内最便宜的一张票能用,那就可劲买,直到最后,所以我们还需要处理出每段区间的最小值的位置,这个显然用st表就行了。
有这上面的这些,最终答案也就显而易见了,第一天必须要,之后的天数直到遇到最小值都用f数组转移,最后直接买最便宜的票

a [ l ] + f [ L ] − f [ p ] + 1 l l ∗ b [ p ] ∗ ( R − p + k ) / k a[l]+f[L]-f[p]+1ll*b[p]*(R-p+k)/k a[l]+f[L]f[p]+1llb[p](Rp+k)/k
其中 L = l + k , R = ( r − l ) / k ∗ k + l L=l+k,R=(r-l)/k*k+l L=l+k,R=(rl)/kk+l

这道题圆满结束!!!!!!!!

注意这里所有的操作都是基于k的,应把转移分成k组,在每组之间转移(太难了!!!)

奉上代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int maxn=3e5+10;
int b[maxn],q[maxn],a[maxn],wz[maxn][30];
int n,Q,k;
LL f[maxn];
void work1()
{
	int l=0,r=-1;
	for(int i=1;i<=n;i++)
	{
		if(l<=r&&i-q[l]>k) l++;
		while(l<=r&&a[q[r]]>=a[i]) r--;
		q[++r]=i;
		b[i]=a[q[l]];
	}
}
void work2()
{
	for(int i=n-k+1;i<=n;i++)
	{
		stack<int> s;
		f[i]=b[i];
		s.push(i);
		for(int j=i-k;j>=1;j-=k)
		{
			int nxt=0;
			while(s.size()&&b[s.top()]>=b[j]) s.pop();
			if(s.size()) nxt=s.top(),f[j]=f[nxt]+1ll*b[j]*(nxt-j)/k;
			else nxt=i+k,f[j]=1ll*b[j]*(nxt-j)/k;
			s.push(j);
		}
	}
}
void work3()
{
	for(int i=1;i<=n;i++) wz[i][0]=i;
	for(int t=0;t<k;t++)
	{
		for(int j=1;(1<<j)*k<=n;j++)
		{
			for(int i=t+1;i+((1<<j)-1)*k<=n;i+=k)
			{
				if(b[wz[i][j-1]]<b[wz[i+(1<<(j-1))*k][j-1]]) wz[i][j]=wz[i][j-1];
				else wz[i][j]=wz[i+(1<<(j-1))*k][j-1];
			}
		}
	}
}
int rmq(int l,int r)
{
	int x=log2((r-l+k)/k);
	if(b[wz[l][x]]<b[wz[r-((1<<x)-1)*k][x]]) return wz[l][x];
	return  wz[r-((1<<x)-1)*k][x];
}
LL ask(int l,int r)
{
	if(r-l<k) return a[l];
	int L=l+k,R=(r-l)/k*k+l;
	int p=rmq(L,R);
	return a[l]+f[L]-f[p]+1ll*b[p]*(R-p+k)/k;
}
int main()
{
//	freopen("job.in","r",stdin);
//	freopen("job.out","w",stdout); 
	scanf("%d%d%d",&n,&Q,&k);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	work1(),work2(),work3(); 
	int l,r;
	while(Q--) scanf("%d%d",&l,&r),printf("%lld\n",ask(l,r));
	return 0;	
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值