原题链接
题解
本题考察方面很多,主要用到单调队列,单调栈,st表,思维难度也比较高
首先注意到,一张票只能持续k天,那么就可以把询问分成以k为基数的t段,最后一段不管是否满了,都需要一张票,所以当t相同的情况下,r大一点,小一点无关紧要,直接进1即可,比如k=2,l=1,那么r=5和r=6的结果是相同的
注意到这点之后,我们需要一个
f
[
i
]
f[i]
f[i]数组,表示从第
i
i
i天开始玩(且不考虑必须在第一天买票),一直到最后一天需要花的钱数,这是一个后缀和。但是在转移的时候遇到问题了,我们无法确定当前这一段买哪一张票最划算,于是我们还需要求出另一个数组,
b
[
i
]
b[i]
b[i],表示
[
i
−
k
,
i
]
[i-k,i]
[i−k,i]这几天的最便宜的门票价格(此处用单调队列处理),这样我们就能进行转移了。
转移时需要考虑两种情况,
一种是在当前这个位置直接把票全买了是最便宜的,也就是当前位置是该区间最小值,就直接计算即可
第二种是当前位置不是最小值,那么往后找到第一个最小值,(这里用单调栈找)从它那里转移过来即可
f
[
j
]
=
1
l
l
∗
b
[
j
]
∗
(
i
+
k
−
j
)
/
k
f[j]=1ll*b[j]*(i+k-j)/k
f[j]=1ll∗b[j]∗(i+k−j)/k
f
[
j
]
=
f
[
n
x
t
]
+
1
l
l
∗
b
[
j
]
∗
(
n
x
t
−
j
)
/
k
f[j]=f[nxt]+1ll*b[j]*(nxt-j)/k
f[j]=f[nxt]+1ll∗b[j]∗(nxt−j)/k
里面的关于k的运算请自行体会
有了这个数组,还没完,我们来关注问题
给出
[
l
,
r
]
[l,r]
[l,r],第一天的门票必须要买,也就是
a
[
l
]
a[l]
a[l]一定在最后的答案中,那再运用贪心的思想,如果这段区间内最便宜的一张票能用,那就可劲买,直到最后,所以我们还需要处理出每段区间的最小值的位置,这个显然用st表就行了。
有这上面的这些,最终答案也就显而易见了,第一天必须要,之后的天数直到遇到最小值都用f数组转移,最后直接买最便宜的票
a
[
l
]
+
f
[
L
]
−
f
[
p
]
+
1
l
l
∗
b
[
p
]
∗
(
R
−
p
+
k
)
/
k
a[l]+f[L]-f[p]+1ll*b[p]*(R-p+k)/k
a[l]+f[L]−f[p]+1ll∗b[p]∗(R−p+k)/k
其中
L
=
l
+
k
,
R
=
(
r
−
l
)
/
k
∗
k
+
l
L=l+k,R=(r-l)/k*k+l
L=l+k,R=(r−l)/k∗k+l
这道题圆满结束!!!!!!!!
注意这里所有的操作都是基于k的,应把转移分成k组,在每组之间转移(太难了!!!)
奉上代码
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int maxn=3e5+10;
int b[maxn],q[maxn],a[maxn],wz[maxn][30];
int n,Q,k;
LL f[maxn];
void work1()
{
int l=0,r=-1;
for(int i=1;i<=n;i++)
{
if(l<=r&&i-q[l]>k) l++;
while(l<=r&&a[q[r]]>=a[i]) r--;
q[++r]=i;
b[i]=a[q[l]];
}
}
void work2()
{
for(int i=n-k+1;i<=n;i++)
{
stack<int> s;
f[i]=b[i];
s.push(i);
for(int j=i-k;j>=1;j-=k)
{
int nxt=0;
while(s.size()&&b[s.top()]>=b[j]) s.pop();
if(s.size()) nxt=s.top(),f[j]=f[nxt]+1ll*b[j]*(nxt-j)/k;
else nxt=i+k,f[j]=1ll*b[j]*(nxt-j)/k;
s.push(j);
}
}
}
void work3()
{
for(int i=1;i<=n;i++) wz[i][0]=i;
for(int t=0;t<k;t++)
{
for(int j=1;(1<<j)*k<=n;j++)
{
for(int i=t+1;i+((1<<j)-1)*k<=n;i+=k)
{
if(b[wz[i][j-1]]<b[wz[i+(1<<(j-1))*k][j-1]]) wz[i][j]=wz[i][j-1];
else wz[i][j]=wz[i+(1<<(j-1))*k][j-1];
}
}
}
}
int rmq(int l,int r)
{
int x=log2((r-l+k)/k);
if(b[wz[l][x]]<b[wz[r-((1<<x)-1)*k][x]]) return wz[l][x];
return wz[r-((1<<x)-1)*k][x];
}
LL ask(int l,int r)
{
if(r-l<k) return a[l];
int L=l+k,R=(r-l)/k*k+l;
int p=rmq(L,R);
return a[l]+f[L]-f[p]+1ll*b[p]*(R-p+k)/k;
}
int main()
{
// freopen("job.in","r",stdin);
// freopen("job.out","w",stdout);
scanf("%d%d%d",&n,&Q,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
work1(),work2(),work3();
int l,r;
while(Q--) scanf("%d%d",&l,&r),printf("%lld\n",ask(l,r));
return 0;
}