[Codeforces 702A] Maximum Increase

文章描述了一个编程问题,要求在给定整数数组中找到最长的递增子数组。提供了一段C++代码示例,使用变量管理和动态更新来找到最大长度,时间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Question

You are given array consisting of n integers. Your task is to find the maximum length of an increasing subarray of the given array.
.
A subarray is the sequence of consecutive elements of the array.
Subarray is called increasing if each element of this subarray strictly greater than previous.
.
Input:
The first line contains single positive integer n (1 ≤ n ≤ 105) — the number of integers.
.
The second line contains n positive integers a1, a2, …, an (1 ≤ ai ≤ 109).
.
Output:
Print the maximum length of an increasing subarray of the given array.

Sample1 Input:
5
1 7 2 11 15

Sameple1 Output:
3

Sample2 Input:
6
100 100 100 100 100 100

Sameple2 Output:
3

Stragedy

While getting the input from users, we can create a variable called “longest”, “nums” and “previous”. We decide whether the previous is smaller than current number. If it is we add 1 to nums and then we determine whether the current nums is larger than the longest, else we reset nums to 1.
Lastly, we ouput the longest.
Time complexity: O(n)

Code

Now is the code you all waiting for:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll n,tmp,longest=1,previous=0,nums=1;
int main(){
    cin>>n;
    cin>>previous;
    for (int i=1;i<n;i++){
        cin>>tmp;
        if (tmp>previous) nums++,longest=max(nums,longest);
        else nums=1;
        previous=tmp;
    }

    cout<<longest;
    return 0;
}

Enjoy 😃!

### 解决方案概述 对于给定的问题,在一维坐标系中有 N 个点,每个点具有特定的权重 w。如果两个点之间的距离大于它们各自权重之和,则这两个点之间可以建立一条边。目标是从这些点中找到最大数量的点使得任意两点间均存在边。 为了实现这一目的,可以通过构建不等式 Xi-Wi ≥ Xj+Wj 来确定有向图中的节点关系[^3]。具体来说: - 对于每一对不同的点 (Xi, Wi) 和 (Xj, Wj),当 Xi > Xj 并且 Xi - Wi >= Xj + Wj 成立时,表示从 j 到 i 存在一个方向。 - Xj| >= Wi + Wj 的判断过程。 基于上述分析,算法设计如下: 1. 创建一个新的数组 P[],其中存储的是经过变换后的数据对 (Xi + Wi, Xi - Wi)。 2. 将此新创建的数据集按照第二个分量升序排列;如果有相同的情况,则按第一个分量降序处理。 3. 初始化计数器 count=0 及当前最小右端点 cur_min_right=-∞。 4. 遍历排序后的列表: - 如果当前元素的第一个分量大于等于cur_min_right,则更新count并设置新的cur_min_right为该元素的第二分量。 5. 输出最终的结果即为所求的最大团大小。 以下是 Python 实现代码示例: ```python def max_clique(n, points): # 计算转换后的点集合 [(xi+wi, xi-wi)] transformed_points = sorted([(points[i][0]+points[i][1], points[i][0]-points[i][1]) for i in range(n)], key=lambda x:(x[1], -x[0])) result = 0 current_end = float('-inf') for start, end in transformed_points: if start >= current_end: result += 1 current_end = end return result ``` 通过这种方法能够有效地解决问题,并获得最优解。值得注意的是,这里采用了一种贪心策略来逐步增加符合条件的顶点数目,从而保证了结果是最优的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值