一站式安装对应显卡版本的cuda和torch(windows)

目录

前言

一、安装python(也可以用conda安装)

二、安装VS的C++环境

三、安装CUDA

2.1、检查环境

2.2、 查看自己是否有NVIDA显卡驱动程序

2.3、查看GPU显卡所支持的CUDA版本

2.4、安装对应版本的CUDA安装包

2.5、选择对应的系统

2.6、运行安装包

2.7、配置Cuda的环境变量

2.8、查看是CUDA是否安装成功

2.9、验证deviceQuery和bandwidthTest

四、安装pytorch

五、运行效果


前言

一年前,安装过cuda,觉得并不难,就没有记录。

这次安装还算顺利,就是在找资料的时候,浪费了不少时间

这次就记录下来,方便以后再次安装


总结安装程序:

1、安装python环境

2、安装VS的C++环境(因为CUDA在安装时,需要VS的里面的工具包来编译。)

3、安装cuda

4、安装pytorch

一、安装python(也可以用conda安装)

直接官网下载:Python Releases for Windows | Python.orgThe official home of the Python Programming Languageicon-default.png?t=N7T8https://www.python.org/downloads/windows/

我下载的版本——蓝奏云下载(python3.9.5):python-3.9.5-amd64.zip - 蓝奏云

进入命令行,输入python,出现这样的界面则表示成功安装

使用conda(Anaconda)的话,可以看看b站的教程(这里就不赘述了)

二、安装VS的C++环境

如果你想用其他版本可以去官网下载:Downloads & Keys - Visual Studio Subscriptionsicon-default.png?t=N7T8https://my.visualstudio.com/Downloads?q=Visual%20Studio%202022

我下载的是:社区免费版VS 2022——VisualStudioSetup.exe

蓝奏云下载2022社区免费版:https://wwm.lanzout.com/i7xQY1ods8xi 
密码:6epa

运行安装程序:

然后找到C++桌面开发

建议安装到专门放软件的盘,不要安装到系统盘C,然后点击开始进行安装

安装完后,电脑需要重启,重启后就可以使用了

三、安装CUDA

在安装前,可以先看看这个博客:理清GPU、CUDA、CUDA Toolkit、cuDNN关系以及下载安装_cudatoolkit-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/qq_42406643/article/details/109545766

2.1、检查环境

  • 检查是否有NVIDA的独立显卡前面的VS是否已经安装

2.2、 查看自己是否有NVIDA显卡驱动程序

如果没有显卡的控制面板,下载安装:NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

2.3、查看GPU显卡所支持的CUDA版本

控制面板-> 帮助-> 系统信息-> 组件-> 我的是CUDA 12.3

2.4、安装对应版本的CUDA安装包

进入官网:CUDA Toolkit Archive | NVIDIA Developer

2.5、选择对应的系统

如果用离线版本,就有3个G,这里我选择的是在线安装

2.6、运行安装包

自己选择路径:

选择——自定义安装

安装组件,全部勾选,点击下一步

自定义下载路径

建议安装到专门放软件的盘,不要安装到系统盘C

然后慢慢等

之后一直下一步就行了~

2.7、配置Cuda的环境变量

安装完成后,就需要我们配置Cuda的环境变量了

他会自己添加的变量:

先找到我们自定义安装的cuda文件夹

然后添加两个环境变量

相当于,总共有这4个文件夹的~

2.8、查看是CUDA是否安装成功

Win + R 打开cmd ,输入命令:nvcc --version

2.9、验证deviceQuery和bandwidthTest

在命令窗口运行文件

ok!CUDA搞定啦~

四、安装pytorch

  • 我的电脑的cuda版本是12.3的,准备安装pytorch!
  • 目前,官网上没有直接支持cuda 12.3的pytorch版本!
  • 通过翻阅其他博客,博主说cuda是向下兼容的!
  • 我就选择了CUDA 12.1

4.1、通过官网,选择对应版本,然后复制命令,直接下载即可!

不过在这里先pip换源

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set install.trusted-host mirrors.aliyun.com

同时,再设置一下超时时间,毕竟这个torch有2~3个G(这里就不赘述了,直接放链接,如果超时了,再来设置也行~)

Python——记录pip问题(解决下载慢、升级失败问题)_pip下载太慢-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Pan_peter/article/details/129553679

安装完成~

五、运行效果

我把我之前那个项目拿来,跑一下试试~

基于YOLOv8的多端车流检测系统(用于毕设+开源)_yolov8 rtsp-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Pan_peter/article/details/132048923

先下载其他库

报错了:type object 'Detections' has no attribute 'from_yolov8'

大佬评论:由于Detection删除了from,所以需要降级,又因为前面的sv调用,所以把supervision降级为0.6.0即可解决pip install supervision==0.6.0

感谢大佬!!!

运行项目:(20多帧,比俺之前只有几帧好多了,啊哈哈~)

用之前的训练demo包试试:

windows使用YOLOv8训练自己的模型(0基础保姆级教学)_windows10使用yolov8常见问题-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Pan_peter/article/details/129907710

也可以正常训练


只不过这里遇到了一个小插曲:

报错:RuntimeError: DataLoader worker (pid(s) 20580, 22560, 5668, 18512, 1240, 18208, 22356) exited unexpectedly

他搞了多线程,我直接关闭他,把训练代码改为 workers=0

model.train(data='./data/cat.yaml', epochs=100, imgsz=640, workers=0)


参考文章:

Cuda和cuDNN安装教程(超级详细)-CSDN博客全网最详细的Python安装教程(Windows) - 知乎 (zhihu.com)Cuda和cuDNN安装教程(超级详细)-CSDN博客

理清GPU、CUDA、CUDA Toolkit、cuDNN关系以及下载安装_cudatoolkit-CSDN博客

安装支持CUDA 12的pytorch教程 - 知乎 (zhihu.com)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pan_peter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值