安装目录
我21年时的博客讲解了如何安装Pytorch,但是因为网络问题很难下载和安装成功,因此整理下这些年总结的离线安装方案,帮助大家更快安装好深度学习环境。文中还需要具备Anaconda安装和环境管理的基础知识。
一、安装CUDA
CUDA(Compute Unified Device Architecture)和cuDNN(CUDA Deep Neural Network library)是由NVIDIA提供的两个关键软件库
,分别用于高性能计算和深度学习加速
。
-
查询支持的CUDA版本:
- 使用
nvidia-smi
命令查询显卡支持的最高CUDA版本
。确保安装的CUDA版本不超过此限制,否则可能需要更新显卡驱动。
- 使用
-
下载CUDA安装包:
- 前往NVIDIA CUDA官网下载对应操作系统和架构的CUDA安装包。
-
安装CUDA:
- 双击安装包开始安装,按照提示进行下一步操作。
- 建议选择自定义安装,以便更好地控制安装组件。
- 在安装过程中,如果系统提示是否安装NVIDIA驱动程序,通常建议选择“否”,特别是当已安装与CUDA兼容的最新显卡驱动程序时。
-
配置环境变量:
- 安装完成后,需要将CUDA的路径添加到系统的环境变量中。这通常包括将CUDA的
bin
目录添加到Path
系统变量中。
- 安装完成后,需要将CUDA的路径添加到系统的环境变量中。这通常包括将CUDA的
-
验证安装:
- 打开命令提示符或终端,输入
nvcc -V
命令,如果显示CUDA版本号,则表示安装成功。
- 打开命令提示符或终端,输入
二、安装cuDNN
-
下载cuDNN安装包:
- 前往NVIDIA cuDNN官网下载对应CUDA版本的cuDNN安装包。注意,cuDNN需要注册NVIDIA开发者账号才能下载。
-
解压cuDNN压缩包:
- 下载完成后,解压cuDNN压缩包,得到
bin
、include
和lib
三个文件夹。
- 下载完成后,解压cuDNN压缩包,得到
-
复制cuDNN文件夹到CUDA安装目录:
- 找到CUDA的安装目录,通常位于
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X
(Windows系统),其中XX.X
表示CUDA版本号。 - 将解压得到的
bin
、include
和lib
三个文件夹复制到CUDA的安装目录下,覆盖原有的同名文件夹(如果存在)。
- 找到CUDA的安装目录,通常位于
-
配置环境变量(可选):
- 虽然通常不需要为cuDNN单独配置环境变量,但为了确保系统能够找到cuDNN库和头文件,可以将cuDNN的
bin
目录也添加到Path
系统变量中(与CUDA的bin
目录相同)。
- 虽然通常不需要为cuDNN单独配置环境变量,但为了确保系统能够找到cuDNN库和头文件,可以将cuDNN的
-
验证安装:
- 可以通过运行CUDA的样例程序(如deviceQuery)来验证cuDNN是否安装成功。这些样例程序位于CUDA安装目录下的
extras\demo_suite
文件夹中。 - 打开命令提示符或终端,导航到样例程序目录,并运行
deviceQuery.exe
(Windows系统)。如果结果为PASS
,则表示cuDNN安装成功。
- 可以通过运行CUDA的样例程序(如deviceQuery)来验证cuDNN是否安装成功。这些样例程序位于CUDA安装目录下的
三、查看CUDA版本
要查看电脑上的CUDA版本,Windows系统上提供3种查看CUDA版本的具体方法:
1. 使用命令行
打开命令提示符(CMD)或PowerShell。输入nvcc --version
(注意nvcc
和--version
之间有空格)。如果CUDA正确安装且环境变量设置正确,这将显示CUDA的版本信息。或者输入nvidia-smi
也可以查看与NVIDIA GPU相关的驱动程序和CUDA版本信息(尽管它可能不是直接的CUDA版本)。
2. 查看NVIDIA控制面板
* 右键单击桌面空白处,选择“NVIDIA控制面板”。
* 在打开的NVIDIA控制面板窗口中,点击左下角的“系统信息”。
* 在弹出的“系统信息”窗口中,切换到“组件”选项卡,找到“CUDA驱动程序”,其后面显示的版本号即为CUDA版本。
这里我解释一下,因为你安装的CUDA驱动程序是要不高于于你NVIDIA显卡驱动程序版本的,因此安装10.0是可以的,无需安装相同版本。
3. 查看安装目录
* CUDA通常安装在`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y`目录下(其中`X.Y`是版本号)。
* 在这个目录中,通常会有一个名为`version.txt`的文件,里面包含了CUDA的版本信息。
四、离线下载Wheel文件(轮子)
1、Wheel文件
-
.whl
文件是一个使用Zip压缩算法进行压缩的文件,它包含了Python模块的压缩形式(如.py文件和经过编译的.pyd文件)以及这些模块的元数据,通常称为“轮子(wheel)
”。这种格式使得Python解释器可以直接加载和使用其中的模块,无需从源代码开始编译。它主要用于存储和传输Python软件包,并允许Python用户安装和分发第三方库。 -
.whl
文件的命名遵循一定的规则,通常包含库名、版本号、Python版本、系统架构等信息。例如,numpy-1.21.2-cp39-cp39-win_amd64.whl表示这是一个名为numpy的库,版本为1.21.2,适用于Python 3.9的64位Windows系统。 -
优点如下:(1)快速安装:由于.whl文件是预编译的二进制包,因此安装过程通常比从源代码安装要快得多,这对于需要频繁安装或更新Python库的用户来说非常有用。(2)跨平台兼容性:.whl文件可以针对不同的操作系统和Python版本进行编译,从而实现了跨平台的兼容性。(3)减少依赖问题:通过安装.whl文件,可以确保所需的依赖项已经包含在内,减少了手动安装依赖项的麻烦。
2、选择torch和torchvision版本
1、进入官网https://download.pytorch.org/whl/torch_stable.html,里面是torch所有相关的轮子。
直接Ctrl+F
查询到自己需要的轮子。
cu100表示cuda的版本10.0,torch-1.2.0,cp37表示python3.7,win表示windows系统,amd64表示64位。
2、查看torch
和torchvision
对应版本:cuda10.0下torch1.2.0对应torchvision0.4.0。
https://blog.csdn.net/shiwanghualuo/article/details/122860521
五、安装Pytorch
1、进入新建的Anaconda环境,输入命令安装:
pip install torch-1.2.0-cp37-cp37m-win_amd64.whl
pip install torchvision-0.4.0-cp37-cp37m-win_amd64.whl
2、进入Python编译器,先import torch
,如果没有报错说明可以导入成功;再输入torch.cuda.is_available()
查看torch是否可以使用显卡,True就代表正常调用GPU。
六、训练模型
1、我们启动训练程序,任务可以正常执行。
2、打开任务管理器,可以看到GPU占用2%,如果是用CPU训练的话,CPU就会占用98%了。因此为了保护电脑,一定要充分利用显卡,当然也只限于简单的神经网络,对于大模型还是要在服务器上多卡训练。
因此古时贤者编了《不可录》一书,记载了淫欲之害、戒淫格言以及福善祸淫的实例,详细而有条理地分析和陈述了持戒的方法、日期以及其中的忌讳,以警世人。作者的觉世救民之心,可谓恳切周挚!后印光大师将《不可录》加以增补修订,并取名为《寿康宝鉴》,再为这本书募捐印刷、令其广泛流通。邪淫的戒除与否,关乎祖宗父母的荣宠羞辱、自己身家的生死成败,关乎后世子孙的贤愚存亡。