Windows安装GPU版本Pytorch最安全快速便捷的方法

我21年时的博客讲解了如何安装Pytorch,但是因为网络问题很难下载和安装成功,因此整理下这些年总结的离线安装方案,帮助大家更快安装好深度学习环境。文中还需要具备Anaconda安装环境管理的基础知识。

一、安装CUDA

CUDA(Compute Unified Device Architecture)和cuDNN(CUDA Deep Neural Network library)是由NVIDIA提供的两个关键软件库,分别用于高性能计算和深度学习加速

  1. 查询支持的CUDA版本

    • 使用nvidia-smi命令查询显卡支持的最高CUDA版本。确保安装的CUDA版本不超过此限制,否则可能需要更新显卡驱动。
  2. 下载CUDA安装包

  3. 安装CUDA

    • 双击安装包开始安装,按照提示进行下一步操作。
    • 建议选择自定义安装,以便更好地控制安装组件。
    • 在安装过程中,如果系统提示是否安装NVIDIA驱动程序,通常建议选择“否”,特别是当已安装与CUDA兼容的最新显卡驱动程序时。
  4. 配置环境变量

    • 安装完成后,需要将CUDA的路径添加到系统的环境变量中。这通常包括将CUDA的bin目录添加到Path系统变量中。
  5. 验证安装

    • 打开命令提示符或终端,输入nvcc -V命令,如果显示CUDA版本号,则表示安装成功。

二、安装cuDNN

  1. 下载cuDNN安装包

    • 前往NVIDIA cuDNN官网下载对应CUDA版本的cuDNN安装包。注意,cuDNN需要注册NVIDIA开发者账号才能下载。
  2. 解压cuDNN压缩包

    • 下载完成后,解压cuDNN压缩包,得到binincludelib三个文件夹。
  3. 复制cuDNN文件夹到CUDA安装目录

    • 找到CUDA的安装目录,通常位于C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X(Windows系统),其中XX.X表示CUDA版本号。
    • 将解压得到的binincludelib三个文件夹复制到CUDA的安装目录下,覆盖原有的同名文件夹(如果存在)。
  4. 配置环境变量(可选)

    • 虽然通常不需要为cuDNN单独配置环境变量,但为了确保系统能够找到cuDNN库和头文件,可以将cuDNN的bin目录也添加到Path系统变量中(与CUDA的bin目录相同)。
  5. 验证安装

    • 可以通过运行CUDA的样例程序(如deviceQuery)来验证cuDNN是否安装成功。这些样例程序位于CUDA安装目录下的extras\demo_suite文件夹中。
    • 打开命令提示符或终端,导航到样例程序目录,并运行deviceQuery.exe(Windows系统)。如果结果为PASS,则表示cuDNN安装成功。

三、查看CUDA版本

要查看电脑上的CUDA版本,Windows系统上提供3种查看CUDA版本的具体方法:

1. 使用命令行

打开命令提示符(CMD)或PowerShell。输入nvcc --version(注意nvcc--version之间有空格)。如果CUDA正确安装且环境变量设置正确,这将显示CUDA的版本信息。或者输入nvidia-smi也可以查看与NVIDIA GPU相关的驱动程序和CUDA版本信息(尽管它可能不是直接的CUDA版本)。
在这里插入图片描述

2. 查看NVIDIA控制面板

* 右键单击桌面空白处,选择“NVIDIA控制面板”。
* 在打开的NVIDIA控制面板窗口中,点击左下角的“系统信息”。
* 在弹出的“系统信息”窗口中,切换到“组件”选项卡,找到“CUDA驱动程序”,其后面显示的版本号即为CUDA版本。

在这里插入图片描述

这里我解释一下,因为你安装的CUDA驱动程序是要不高于于你NVIDIA显卡驱动程序版本的,因此安装10.0是可以的,无需安装相同版本。

3. 查看安装目录

* CUDA通常安装在`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y`目录下(其中`X.Y`是版本号)。
* 在这个目录中,通常会有一个名为`version.txt`的文件,里面包含了CUDA的版本信息。

在这里插入图片描述

四、离线下载Wheel文件(轮子)

1、Wheel文件

  • .whl文件是一个使用Zip压缩算法进行压缩的文件,它包含了Python模块的压缩形式(如.py文件和经过编译的.pyd文件)以及这些模块的元数据,通常称为“轮子(wheel)”。这种格式使得Python解释器可以直接加载和使用其中的模块,无需从源代码开始编译。它主要用于存储和传输Python软件包,并允许Python用户安装和分发第三方库。

  • .whl文件的命名遵循一定的规则,通常包含库名、版本号、Python版本、系统架构等信息。例如,numpy-1.21.2-cp39-cp39-win_amd64.whl表示这是一个名为numpy的库,版本为1.21.2,适用于Python 3.9的64位Windows系统。

  • 优点如下:(1)快速安装:由于.whl文件是预编译的二进制包,因此安装过程通常比从源代码安装要快得多,这对于需要频繁安装或更新Python库的用户来说非常有用。(2)跨平台兼容性:.whl文件可以针对不同的操作系统和Python版本进行编译,从而实现了跨平台的兼容性。(3)减少依赖问题:通过安装.whl文件,可以确保所需的依赖项已经包含在内,减少了手动安装依赖项的麻烦。

2、选择torch和torchvision版本

1、进入官网https://download.pytorch.org/whl/torch_stable.html,里面是torch所有相关的轮子。
直接Ctrl+F查询到自己需要的轮子。

cu100表示cuda的版本10.0,torch-1.2.0,cp37表示python3.7,win表示windows系统,amd64表示64位。

在这里插入图片描述

2、查看torchtorchvision对应版本:cuda10.0下torch1.2.0对应torchvision0.4.0。
https://blog.csdn.net/shiwanghualuo/article/details/122860521

在这里插入图片描述

五、安装Pytorch

1、进入新建的Anaconda环境,输入命令安装:

pip install torch-1.2.0-cp37-cp37m-win_amd64.whl
pip install torchvision-0.4.0-cp37-cp37m-win_amd64.whl

2、进入Python编译器,先import torch,如果没有报错说明可以导入成功;再输入torch.cuda.is_available()查看torch是否可以使用显卡,True就代表正常调用GPU。

在这里插入图片描述

六、训练模型

1、我们启动训练程序,任务可以正常执行。

在这里插入图片描述

2、打开任务管理器,可以看到GPU占用2%,如果是用CPU训练的话,CPU就会占用98%了。因此为了保护电脑,一定要充分利用显卡,当然也只限于简单的神经网络,对于大模型还是要在服务器上多卡训练。
在这里插入图片描述

因此古时贤者编了《不可录》一书,记载了淫欲之害、戒淫格言以及福善祸淫的实例,详细而有条理地分析和陈述了持戒的方法、日期以及其中的忌讳,以警世人。作者的觉世救民之心,可谓恳切周挚!后印光大师将《不可录》加以增补修订,并取名为《寿康宝鉴》,再为这本书募捐印刷、令其广泛流通。邪淫的戒除与否,关乎祖宗父母的荣宠羞辱、自己身家的生死成败,关乎后世子孙的贤愚存亡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

振华OPPO

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值