对导数、偏导数、方向导数、梯度的理解

对导数、偏导数、方向导数、梯度的理解

导数与偏导数

首先说明导数在此处特指二维空间中的切线。
切线定义 lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \lim_{\Delta x\rightarrow 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}} limΔx0Δxf(x+Δx)f(x),因此在一元函数中,只有一个自变量变动,即只存在一个方向的变化率。
然而在多元函数中,此处以二元函数 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0举例。由于曲面上一个点有任意方向的切线。偏导数 F x ′ , F y ′ , F z ′ F_x', F_y', F_z' Fx,Fy,Fz表征的就是函数分别对x轴,y轴,z轴方向的斜率。那如果我要表示任何防线的斜率或导数呢?为解决这个问题就有了方向导数

方向导数

设空间曲线 u = f ( x , y , z ) u=f(x,y,z) u=f(x,y,z)任意两点之间的距离为 ρ = ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 \rho =\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2} ρ=(Δx)2+(Δy)2+(Δz)2 ,并且该点的方向向量为 n ⃗ 0 = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \vec{n}^0=(\cos {\alpha},\cos {\beta},\cos {\gamma}) n 0=(cosα,cosβ,cosγ)。和二维空间的导数相似 ∂ u ∂ l ⃗ = lim ⁡ ρ → 0 u ( ρ + Δ ρ ) − u ( ρ ) Δ ρ = u x ′ d x ρ + u y ′ d y ρ + u z ′ d z ρ = u x ′ cos ⁡ α + u y ′ cos ⁡ β + u z ′ cos ⁡ γ \frac{\partial {u}}{\partial {\vec{l}}}=\lim_{\rho \rightarrow 0}{\frac{u(\rho +\Delta \rho)-u(\rho)}{\Delta \rho}}=\frac{u_x'dx}{\rho}+\frac{u_y'dy}{\rho}+\frac{u_z'dz}{\rho}=u_x'\cos {\alpha}+u_y'\cos {\beta}+u_z'\cos {\gamma} l u=limρ0Δρu(ρ+Δρ)u(ρ)=ρuxdx+ρuydy+ρuzdz=uxcosα+uycosβ+uzcosγ

梯度

实际问题中,往往需要找出函数沿哪个方向的变化率最大,因此梯度概念不是首先产生的,而是根据需要产生的。定义Nabla算子或Hamilton算子 ∇ u = u x ′ i ⃗ + u y ′ j ⃗ + u z ′ k ⃗ \nabla u=u_x'\vec{i}+u_y'\vec{j}+u_z'\vec{k} u=uxi +uyj +uzk ,那么方向导数可以写成 ∂ u ∂ l ⃗ = ∇ u ∗ n ⃗ 0 = ∣ ∇ u ∣ ∣ n ⃗ 0 ∣ cos ⁡ θ \frac{\partial {u}}{\partial {\vec{l}}}=\nabla u * \vec{n}^0=\left|\nabla u\right|\left|\vec{n}^0\right|\cos {\theta} l u=un 0=un 0cosθ
此处可以看出方向导数是一个变化率,即标量,而梯度是一个矢量。
因此可以得到,当 θ = 0 \theta =0 θ=0时,即方向导数方向与梯度方向一致时,函数变化率最大。

空间中的应用

  • 空间曲面 F ( x , y , z ) F(x,y,z) F(x,y,z)的切平面与法线
    • 切平面 F x ′ ( x − x 0 ) + F y ′ ( y − y 0 ) + F z ′ ( z − z 0 ) = 0 F_x'(x-x_0)+F_y'(y-y_0)+F_z'(z-z_0)=0 Fx(xx0)+Fy(yy0)+Fz(zz0)=0
    • 法线 x − x 0 F x ′ = y − y 0 F y ′ = z − z 0 F z ′ \frac{x-x_0}{F_x'}=\frac{y-y_0}{F_y'}=\frac{z-z_0}{F_z'} Fxxx0=Fyyy0=Fzzz0
  • 空间曲线由参数方程 x = x ( t ) , y = y ( t ) , z = z ( t ) x=x(t),y=y(t),z=z(t) x=x(t),y=y(t),z=z(t)给出的切线与法平面
    和空间曲面需要用梯度计算不同,由参数方程给出的空间曲线在某点的方向可以由方向向量直接求出
    • 切线 x t ′ x − x 0 = y t ′ y − y 0 = z t ′ z − z 0 \frac{x_t'}{x-x_0}=\frac{y_t'}{y-y_0}=\frac{z_t'}{z-z_0} xx0xt=yy0yt=zz0zt
    • 法平面 x t ′ ( x − x 0 ) + y t ′ ( y − y 0 ) + z t ′ ( z − z 0 ) = 0 x_t'(x-x_0)+y_t'(y-y_0)+z_t'(z-z_0)=0 xt(xx0)+yt(yy0)+zt(zz0)=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Weijian Feng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值