[Coursera] 机器学习入门

本文是Coursera上的斯坦福大学机器学习课程的学习笔记,介绍了机器学习的基本思想和解决模型,重点讲解了线性回归的概念和求解方法,包括梯度下降。还给出了学习机器学习的一些建议,如复习线性代数并选择合适的编程语言。
摘要由CSDN通过智能技术生成

[Coursera] 机器学习入门

@斯坦福公开课 Machine Learning 学习笔记

基本思想

机器学习(machine learning)是一种方法或算法,它能够通过“学习”,来解决一些特定的问题。

接下来,我将以具体的实例,阐述机器学习的产生和设计过程。

以认人识物为例,只要你告诉一个之前不知道苹果的人“这是苹果,那是苹果,那也是苹果”,当你再拿一个新的苹果,问他是什么,他便能够回答出“这是苹果”。

这对于人来说,是一个很自然,不需要什么努力就能完成的任务,但这对机器却不是。如果要让机器能够认出这个苹果,我们要先思考 “我们人,是怎么认出这个苹果的”。

将认苹果的过程抽象出来,我们可以得到以下过程:

这里写图片描述

即人眼看到苹果,获取苹果的图像传递给大脑,大脑对图像进行判断,得出结果。将此过程再抽象扩展,我们得到更一般的过程。

这里写图片描述

即给定一个或多个输入,通过一个处理器处理,得到一个或多个输出。

此即人对此类问题处理方法的概况,也即“人是怎么认出苹果来的”。同时,这个过程也给了我们要让机器认出苹果的方法。即解决两个问题:

  1. 如何获取输入
  2. 如何处理输入,并给出输出

不同的问题有不同的获取输入的办法,以认苹果为例,利用数码照相机对苹果成像得到照片(即一系列像素)即可作为输入。通常来说,输入的获取较为容易(当然也不全是这样),而处理部分则相对困难。

对于处理,也有很多不同的办法,其主要思想在于构造一个函数,能够将不同输入映射到不同的输出上去。

然而我们不可能针对每个问题都设计一个算法,认苹果一个,认桃子一个这样做,我们需要让机器学习,让它自己设计出这个“算法”,我们要做的就是

  1. 提供给机器学习的办法
  2. 提供给机器评估算法好坏的办法

至此,我们最初“让机器认物品(苹果)”这个问题就转换为,如何让机器通过一系列输入,在这个例子中为物品的照片,学习出识别的算法 和 如何评估算法的优劣,好让机器调整算法。

至此,我们便清楚了机器学习究竟在做什么以及它大体上是如何做的。

下面简单介绍一种模型:


解决模型

线性回归

线性回归分为单变量线性回归和多变量线性回归。其中单变量线性回归就是大家初高中求回归直线基本一样,而多变量就是将回归直线扩展到平面,空间,高维空间。

我们知道线性回归就是用一个线性函数去拟合给定的一个数据集,就像这样。

h(X)=θ0+θ1x1+θ2x2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值