Leetcode每日随机2021/4/4

这篇博客介绍了一种使用动态规划解决硬币找零问题的方法,通过转移方程dp[i][j]=dp[i-1][j]+dp[i][i-coin[i]]简化为一维数组。代码示例中展示了如何用Java实现,计算给定硬币面额和数值时的不同找零方案数。
摘要由CSDN通过智能技术生成

在这里插入图片描述

参考了这篇题解
我真是个菜逼。
转移方程dp[i][j] = dp[i-1][j] + dp[i][i-coin[i]];
dp[i][j]表示用前i种硬币表示数额j的所有方案数;
所以举个例子:
用四种币值表示100的所有方案数=用三种币值表示100+用四种币值表示75.
因为75的表示中是包含了50的表示的,50的表示中包含了25的表示,所以这个方程是成立的。
只要我们币值顺序算,那么二维数组是可以化简成一位数组的(因为币值小的先算,数额小的也先算)。

代码

class Solution {
    public int waysToChange(int n) {
		int[] dp = new int[n + 1];
		int[] coins = { 1, 5, 10, 25 };
		dp[0] = 1;
		for (int coin : coins) {
			for (int i = coin; i <= n; i++) {
				dp[i] = (dp[i] + dp[i - coin]) % 1000000007;
			}
		}
		return dp[n];
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值