线性回归(四)—— 标准方程法

标准方程法

预备知识

  • 下文均使用大写字母表示矩阵,小写字母带下标表示变量,

    小写字母无下标表示向量

  • 一个标量多元函数对一个向量的导数是这样定义的

    我们假设这个函数是 f ( x ) = w 0 x 0 + w 1 x 1 + … + w n x n f(x)=w_0x_0+w_1x_1+…+w_nx_n f(x)=w0x0+w1x1++wnxn

    那么
    ∂ f ( x ) ∂ x = [ ∂ f ( x ) ∂ x 0 , ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , … , ∂ f ( x ) ∂ x n ] T \frac{\partial f(x)}{\partial x}=[\frac{\partial f(x)}{\partial x_0},\frac{\partial f(x)}{\partial x_1},\frac{\partial f(x)}{\partial x_2},…,\frac{\partial f(x)}{\partial x_n}]^T xf(x)=[x0f(x),x1f(x),x2f(x),,xnf(x)]T

  • 结论一
    ∂ β T x ∂ x = β \frac{\partial \beta^Tx}{\partial x}=\beta xβTx=β
    证明:这个很简单,把这个f(x)写出来就一目了然了

    f ( x ) = β 1 x 1 + β 2 x 2 + β 3 x 3 + … + β n x n f(x)=\beta_1x_1+\beta_2x_2+\beta_3x_3+…+\beta_nx_n f(x)=β1x1+β2x2+β3x3++βnxn

    ​ 对 x i x_i xi求导就是 β i \beta_i βi

  • 结论二
    ∂ x T A x ∂ x = ( A + A T ) x \frac{\partial x^TAx}{\partial x}=(A+A^T)x xxTAx=(A+AT)x
    证明:这个的证明稍微麻烦一点,但对本人来说还是过于easy。还是只要把f(x)展开就行了。


    f ( x ) = [ x 1 , x 2 , … , x n ] [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n … … . . . . . . a n 1 a n 2 … a n n ] [ x 1 x 2 . . . x n ] = ∑ i = 1 n a i i x i 2 + ∑ i = 1 n − 1 ∑ j = i + 1 n ( a i j + a j i ) x i x j f(x)= [x_1,x_2,…,x_n] \left[ \begin{matrix} a_{11} & a_{12} & … & a_{1n}\\ a_{21} & a_{22} & … & a_{2n}\\ … & … & ... & ...\\ a_{n1} & a_{n2} & … & a_{nn} \end{matrix} \right] \left[ \begin{matrix} x_1\\ x_2\\ ...\\ x_n \end{matrix} \right]=\sum_{i=1}^{n}a_{ii}x_i^2+\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}(a_{ij}+a_{ji})x_ix_j f(x)=[x1,x2,,xn]a11a21an1a12a22an2...a1na2n...annx1x2...xn=i=1naiixi2+i=1n1j=i+1n(aij+aji)xixj
    比如f(x)对 x 1 x_1 x1求导就得到 2 a 11 x 1 + ( a 21 + a 12 ) x 2 + . . . + ( a n 1 + a 1 n ) x n 2a_{11}x_1+(a_{21}+a_{12})x_2+...+(a_{n1}+a_{1n})x_n 2a11x1+(a21+a12)x2+...+(an1+a1n)xn

    写成矩阵形式就是
    [ 2 a 11 , ( a 12 + a 21 ) , . . . , ( a 1 n + a n 1 ) ] [ x 1 x 2 . . . x n ] \left[ \begin{matrix} 2a_{11},(a_{12}+a_{21}),...,(a_{1n}+a_{n1}) \end{matrix} \right] \left[ \begin{matrix} x_1\\ x_2\\ ...\\ x_n \end{matrix} \right] [2a11,(a12+a21),...,(a1n+an1)]x1x2...xn

    那f(x)对整个x向量求导就可以写成
    [ 2 a 11 , ( a 12 + a 21 ) , . . . , ( a 1 n + a n 1 ) ( a 21 + a 12 ) , 2 a 22 , . . . , ( a 2 n + a n 2 ) . . . . . . , . . . . . , . . . . . . , . . . . . . ( a n 1 + a 1 n ) , ( a n 2 + a 2 n ) , . . . , 2 a n n ] [ x 1 x 2 . . . x n ] \left[ \begin{matrix} 2a_{11},(a_{12}+a_{21}),...,(a_{1n}+a_{n1})\\ (a_{21}+a_{12}),2a_{22},...,(a_{2n}+a_{n2})\\ ......,.....,......,......\\ (a_{n1}+a_{1n}),(a_{n2}+a_{2n}),...,2a_{nn} \end{matrix} \right] \left[ \begin{matrix} x_1\\ x_2\\ ...\\ x_n \end{matrix} \right] 2a11,(a12+a21),...,(a1n+an1)(a21+a12),2a22,...,(a2n+an2)......,.....,......,......(an1+a1n),(an2+a2n),...,2annx1x2...xn

    将左侧的大矩阵拆开,就可以得到 A + A T A+A^T A+AT,故 ∂ x T A x ∂ x = ( A + A T ) x \frac{\partial x^TAx}{\partial x}=(A+A^T)x xxTAx=(A+AT)x

原理

梯度下降法是一步步迭代找到的极值点,但是标准方程法是直接将所有回归参数算出来了。

先来看代价函数
J ( w 0 , w 1 , … , w n ) = 1 2 m ∑ i = 1 m ( y i − h w ( x i ) ) 2 J(w_0,w_1,…,w_n) = \frac{1}{2m}\sum_{i=1}^{m}{(y^i-h_w(x^i))^2} J(w0,w1,,wn)=2m1i=1m(yihw(xi))2
如果写成矩阵形式就是
J ( w ) = 1 2 m ( y − X w ) T ( y − X w ) J(w)=\frac{1}{2m}(y-Xw)^T(y-Xw) J(w)=2m1(yXw)T(yXw)
根据极值点偏导数为0可得
∂ ( y − X w ) T ( y − X w ) ∂ w = 0 \frac{\partial (y-Xw)^T(y-Xw)}{\partial w}=0 w(yXw)T(yXw)=0

∂ ( y − X w ) T ( y − X w ) ∂ w = ∂ y T y ∂ w − ∂ y T X w ∂ w − ∂ w T X T y ∂ w + ∂ w T X T X w ∂ w \frac{\partial (y-Xw)^T(y-Xw)}{\partial w}=\frac{\partial y^Ty}{\partial w}-\frac{\partial y^TXw}{\partial w}-\frac{\partial w^TX^Ty}{\partial w}+\frac{\partial w^TX^TXw}{\partial w} w(yXw)T(yXw)=wyTywyTXwwwTXTy+wwTXTXw

易知
∂ y T y ∂ w = 0 \frac{\partial y^Ty}{\partial w}=0 wyTy=0
根据结论一可得
∂ y T X w ∂ w = ∂ ( X T y ) T w ∂ w = X T y \frac{\partial y^TXw}{\partial w}=\frac{\partial (X^Ty)^Tw}{\partial w}=X^Ty wyTXw=w(XTy)Tw=XTy
因为 y T X w y^TXw yTXw是标量,所以 y T X w = ( y T X w ) T = w T X T y y^TXw=(y^TXw)^T=w^TX^Ty yTXw=(yTXw)T=wTXTy,故
∂ w T X T y ∂ w = X T y \frac{\partial w^TX^Ty}{\partial w}=X^Ty wwTXTy=XTy
根据结论二可得
∂ w T X T X w ∂ w = 2 X T X w \frac{\partial w^TX^TXw}{\partial w}=2X^TXw wwTXTXw=2XTXw
代入可得
0 − X T y − X T y + 2 X T X w = 0 0-X^Ty-X^Ty+2X^TXw=0 0XTyXTy+2XTXw=0

X T X w = X T y X^TXw=X^Ty XTXw=XTy

w = ( X T X ) − 1 X T y w=(X^TX)^{-1}X^Ty w=(XTX)1XTy

这样我们就把w向量求出来了。

当然从这里可以看出 X T X X^TX XTX必须存在逆矩阵,不然无法使用标准方程法求出。

标准方程法实现一元线性回归

# encoding:utf-8
import numpy as np
import matplotlib.pyplot as plt


# 载入数据
data = np.genfromtxt("../data/data.csv", delimiter=',')
x_data = data[:, 0, np.newaxis]
y_data = data[:, 1, np.newaxis]

# 给样本加入偏置项
X_data = np.concatenate((np.ones((100, 1)), x_data), axis=1)


# 定义标准方程法求回归参数
def weights(xArray, yArray):
    xMat = np.mat(xArray)
    yMat = np.mat(yArray)
    xTx = xMat.T * xMat
    
    # 判断矩阵是否存在逆矩阵
    if np.linalg.det(xTx) == 0.0:
        print("无法使用标准方程法计算")
        return
    return xTx.I * xMat.T * yMat


ws = weights(X_data, y_data)
x = np.array([[20], [80]])
plt.plot(x_data, y_data, 'b.')
y = ws[0] + x * ws[1]
plt.plot(x, y, 'r')
plt.show()

标准方程法求一元线性回归

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值