Leetcode每日随机2021/5/10

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

心乱了
第一题
一看就是弗洛伊德。固定模板,先转成邻接矩阵,自己到自己设为0,不可直达的边设为Integer.MAX_VALUE.
复制一遍这个邻接矩阵记作floyd矩阵,三重循环k,i,j。
temp = floyd[i][k] + floyd[k][j],如果ik和kj中有不可达的路径,temp仍为不可达。
否则若temp<floyd[i][j],更新floyd[i][j]为temp。
第二题
以前做过。
第三题
没做出来也没时间做了。
dp[i]表示前i个字符能拆成什么几种情况。
dp[i] = dp[i-1] + dp[i-2] + …… +dp[0]
其实最多往前推9步就行了,因为k是有范围的。

代码

第一题

class Solution {
    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
		int[][] matrix = new int[n][n];
		for (int i = 0; i < matrix.length; i++) {
			for (int j = 0; j < matrix.length; j++) {
				matrix[i][j] = i == j ? 0 : Integer.MAX_VALUE;
			}
		}
		for (int i = 0; i < edges.length; i++) {
			matrix[edges[i][0]][edges[i][1]] = edges[i][2];
			matrix[edges[i][1]][edges[i][0]] = edges[i][2];
		}
		int[][] floyd = new int[n][n];
		for (int i = 0; i < floyd.length; i++) {
			for (int j = 0; j < floyd.length; j++) {
				floyd[i][j] = matrix[i][j];
			}
		}
		for (int k = 0; k < floyd.length; k++) {
			for (int i = 0; i < floyd.length; i++) {
				for (int j = 0; j < floyd.length; j++) {
					int temp = (floyd[i][k] == Integer.MAX_VALUE || floyd[k][j] == Integer.MAX_VALUE)
							? Integer.MAX_VALUE
							: floyd[i][k] + floyd[k][j];
					if (floyd[i][j] > temp) {
						floyd[i][j] = temp;
					}
				}
			}
		}
		int min = Integer.MAX_VALUE, minIdx = 0;
		for (int i = 0; i < floyd.length; i++) {
			int count = 0;
			for (int j = 0; j < floyd.length; j++) {
				if (j != i && floyd[i][j] <= distanceThreshold) {
					count++;
				}
			}
			if (count <= min) {
				min = count;
				minIdx = i;
			}
		}
		return minIdx;
	}
}

第二题

class Solution {
    public int largestOverlap(int[][] img1, int[][] img2) {
		int len = img1.length;
		List<int[]> one1 = new ArrayList<int[]>();
		List<int[]> one2 = new ArrayList<int[]>();
		for (int i = 0; i < len; i++) {
			for (int j = 0; j < len; j++) {
				if (img1[i][j] == 1) {
					one1.add(new int[] { i, j });
				}
				if (img2[i][j] == 1) {
					one2.add(new int[] { i, j });
				}
			}
		}
		int max = 0;
		for (int[] pos1 : one1) {
			for (int[] pos2 : one2) {
				int temp = countOne(pos1, pos2, img1, img2);
				max = temp > max ? temp : max;
			}
		}
		return max;
	}

	private int countOne(int[] pos1, int[] pos2, int[][] img1, int[][] img2) {
		int count = 0, len = img1.length;
		int rowDelta = -Math.min(pos1[0], pos2[0]), colDelta = -Math.min(pos1[1], pos2[1]);
		while (pos1[0] + rowDelta < len && pos2[0] + rowDelta < len) {
			while (pos1[1] + colDelta < len && pos2[1] + colDelta < len) {
				count += img1[pos1[0] + rowDelta][pos1[1] + colDelta] * img2[pos2[0] + rowDelta][pos2[1] + colDelta];
				colDelta++;
			}
			colDelta = 0;
			rowDelta++;
		}
		return count;
	}
}

以下代码参考自这位老哥的题解
第三题

class Solution {
    public int numberOfArrays(String s, int k) {
		int mod = 1000000007;
		int[] dp = new int[s.length() + 1];
		dp[0] = 1;
		for (int i = 1; i < dp.length; i++) {
			for (int j = i - 1; j >= 0 && i - j < 10; j--) {
				if (s.charAt(j) == '0') {
					continue;
				}
				if (Long.valueOf(s.substring(j, i)) <= k) {
					dp[i] = (dp[i] + dp[j]) % mod;
				} else {
					break;
				}
			}
		}
		return dp[s.length()] % mod;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值