Davis2017数据集指标评估方法-Python Version

DAVIS2017数据集是一个面向视频对象分割(VOS)任务的重要数据集,具有多目标性、丰富性和高质量的特点。相比于DAVIS2016,它拥有更多的视频图片序列和帧数量

DAVIS2017数据集包含两个版本:

  • 最初版本:DAVIS2017提供了train、val、test-dev和test-challenge四个split。其中train和val具有实例级分割标注,而test-dev和test-challenge不公开ground truth annotation,需要通过Evaluation Server评估性能。
  • 无监督版本(DAVIS2017 Unsupervised):在2019年,提出了针对无监督视频目标分割的数据集。这个版本在原始的2017版本之上重新标注了分割标签,使得分割标注的语义关联更为一致,并且避免了原有数据集对semi-supervised segmentation的偏好性。

而Davis2017数据集的评估方法也有两个版本:matlab version和python version。因为matlab version和DAVIS2016的评估方法一样,所以这里只以python version为例。

官方网站:DAVIS: Densely Annotated VIdeo Segmentation (d

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值