DAVIS2017数据集是一个面向视频对象分割(VOS)任务的重要数据集,具有多目标性、丰富性和高质量的特点。相比于DAVIS2016,它拥有更多的视频图片序列和帧数量
DAVIS2017数据集包含两个版本:
- 最初版本:DAVIS2017提供了train、val、test-dev和test-challenge四个split。其中train和val具有实例级分割标注,而test-dev和test-challenge不公开ground truth annotation,需要通过Evaluation Server评估性能。
- 无监督版本(DAVIS2017 Unsupervised):在2019年,提出了针对无监督视频目标分割的数据集。这个版本在原始的2017版本之上重新标注了分割标签,使得分割标注的语义关联更为一致,并且避免了原有数据集对semi-supervised segmentation的偏好性。
而Davis2017数据集的评估方法也有两个版本:matlab version和python version。因为matlab version和DAVIS2016的评估方法一样,所以这里只以python version为例。