Davis数据集指标评估方法

本文介绍了如何在VideoObjectSegmentation任务中使用DAVIS2016数据集进行模型评估,包括数据集准备、评估工具的使用(Matlab指标代码)、网络结果比较以及如何利用Matlab计算和可视化评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Video Object Segmentation(VOS)任务中benchmark主要有DAVIS2016,DAVIS2017,Youtube2018,Youtube2019等,但是在跑网络后得出的结果是每一帧的分割图,实际网络效果高低无法看出来。所以这里以Davis2016数据集为例:

官方网站:https://davischallenge.org/davis2016/code.html
paper:A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation

一、数据集准备

你可能已经在跑网络之前已经下载过DAVIS2016数据集了,如果没有,可以点击上方官方网站传送门,点击下载并解压:

解压完该目录下有Annotations,ImageSets,JPEGIm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值