完全局部二值模式(CLBP)学习

    CLBP纹理描述符是在LBP描述符基础上扩展的纹理描述符,它有效描述 LBP 类型的遗失信息,以便获得更好的纹理分类性能。在2010年,由Guo等人提出。

1.基本原理

    在完全局部二值模式(CLBP)中,局部区域可以由中心像素和局部差分的符号-幅度变换((local differencesign-magnitude transform,LDMT)来描述。
    CLBP由3部分组成。分别是全局对比度CLBP_C,正负二值模式CLBP_S和幅度二值模式CLBP_M。
    其中,中心像素通过全局阈值形成二值编码,称为CLBP_C:
在这里插入图片描述
gcg_{c}表示某一点的中心像素,cIc_{I}表示图像像素的平均灰度值。
    另外,局部差分符号-幅度变换可以将图像局部纹理结构分解成为两种互补成分,即正负二值模式
CLBP_ S,幅度二值模式 CLBP_ M。所述的三种二值编码可以任意组合构成最终的CLBP 直方图,能实现比传统的 LBP 更有效的旋转不变分类能力。
    通常,给定一个中心像素和其他 P 个邻域值,则局部差向量表示为 [d0,...,dp1d_{0},...,d_{p-1}]。
    其中dp=gpgcd_{p}=g_{p}-g_{c},dpd_{p}利用LDMT分解成2个部分,即:
在这里插入图片描述
其中,Sp={1,dp01,dp<0 S_p=\left\{\begin{array}{l}1,d_p\geq0\\-1,d_p<0\end{array}\right.\\
sps_{p}mpm_{p}分别是dpd_{p}的符号和幅度值。
CLBP_S描述子的公式和传统的LBP描述子相似:
在这里插入图片描述
定义CLBP_M:
在这里插入图片描述
    其中,cc是自适应阈值,由整个图像中mpm_{p}的均值来表示。与LBPP,Rriu2LBP_{P,R}^{riu2}类似,CLBP_MP,RCLBP\_M_{P,R}的旋转不变版本可以定义为CLBP_MP,Rriu2CLBP\_M_{P,R}^{riu2},同样可以实现旋转不变的纹理分类。
    下面为CLBP描述符的示意图:
在这里插入图片描述
    在纹理分类中,CLBP 可以有两种方式组合,即串联和联合方式。 CLBP_S/M/C是三维的联合直方图,而 CLBP_M_S/C是由联合直方图 CLBP_S/C与 CLBP_M 串联而成的。
    在 Outex 纹理数据库中, CLBP_ S比 CLBP_ M实现更好地分类结果,由此可知纹理的符号信息比幅度信息更具有描述纹理的能力。另外,结合中心像素的描述信息, CLBP_M/C 比 CLBP_ M获得较好效果, CLBP_ S/M/C比 CLBP_S/M 具有更高准确率。但是不同融合方式会造成不一样的计算复杂度,例如当P=24时,CLBP_SP,Rriu2/MP,Rriu2/CCLBP\_S_{P,R}^{riu2}/M_{P,R}^{riu2}/C的特征维度是 1352(26x26x2),而CLBP_SP,Rriu2_MP,Rriu2/CCLBP\_S_{P,R}^{riu2}\_M_{P,R}^{riu2}/C的维度为78(26+26x2)。虽然两种融合方法都有优缺点,具体应用哪一种方案需要针对具体 的需求来选择。

附:论文源码matlab代码实现
参考文献:《基于 Contourlet 变换和局部二值模式图像纹理分类研究及其应用》

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读