目标:资产稳定中高速增长,年化回报20%以上,最大回撤少于20%,满足投资研究兴趣,实现财富自由。
方法:统一量化投研框架,实现各种常见中低频量化策略,筛选出可靠的量化投资模型,建立使用者界面GUI方便使用,做到可并发提高运行效率,可实盘下单买卖。
编程模块实现:1. 获取数据,2. 处理数据,3. 储存数据,4. 建立策略,5. 风险管控,6. 策略回测,7. 分析结果,8. 导出结果,9. 实盘下单。
实战战略:多策略,多资产,多频率,多市场。
投资策略大类
有被动型(全天候)和主动型投资策略。
被动型策略就是投一些指数基金,债券基金,黄金基金等等,长期或定期按一定比例投,不主动择时或轮动干预投资。好处是不需要投入大量时间研究,也有高于利率的回报,风险中等,回报率也不高,长期年化回报率5-10%。这种投资方式适合没有时间研究投资的朋友。
我认为常见的主动型投资策略有三大类:1. 轮动,2. 择时(因子规则,升跌预测,图表形态)和 3. 套利。这些策略是我的焦点,我平时基本上研究这些量化策略。
数据类别:横截面数据 (cross-sectional data),时间序列 (time-series data),面板数据 (panel data or longitudinal data)
数据间隔频率:高频(微秒至秒),中频(分钟),低频(日)
投资标的:股票,商品期货,债券,ETF,外汇,加密货币,各个国家指数基金,行业基金,投资风格基金等
因子:财务,经济,技术指标,统计,AI挖掘创造,规则筛选等
- 轮动策略:
用各种投资标的,各种因子。
两种执行:1. 多因子综合打分,排序,选择投资标的轮动,2. 独立因子打分,排序,择标轮动
性质:可以是趋势或者均值回归
轮动频率:每分,每时,每天,每周,每月,每季,每年
2 择时
2.1 规则择时
用各种投资标的,各种因子。
性质:可以是趋势或者均值回归
单时间序列,因子规则决定买卖。
海龟交易,网格交易,Dual Thrust, R breaker 策略也是择时策略。
用各种数据频率。
2.2 升跌预测
用各种投资标的,各种因子。
模型预测一只或多只标的的升跌。
可用各种模型,包括线性回归,机器学习模型,深度学习模型。
用各种数据频率。
2.3 图表形态
按图表形态决定买卖。
3 套利
3.1 无风险套利:同样的投资标的在不同市场有差价,可同时买低价标的,卖高价标的,赚差价。
3.2 统计套利:配对交易,多标的组合套利,跨期套利
建立策略从单标的多模型开始,然后做多标的单模型,最后做到多标的多模型。这样可以分散模型风险,降低最大回撤,增加夏普比率,从而达到投资目标。