一、DeepSeek平台(platform.deepseek.com)通用操作指南(无需代码)
- 模板化启动:登录平台 → 选择场景模板(教育/工程/政务等) → 按向导上传数据或调整参数。
- 结果优化:使用「智能调参」功能让AI自动优化模型,对比不同方案的可视化结果。
- 协作共享:点击「生成分享链接」将报告发送给团队成员,设置查看/编辑权限。
二、DeepSeek平台(platform.deepseek.com)实操指南(完整流程)
以构建动态氧化亚铜(Cu₂O)分子模型为例的完整流程,涵盖 建模、模拟、可视化 全链路:
氧化亚铜晶胞结构
(一)平台环境配置
- 登录与项目创建
- 访问 platform.deepseek.com,点击「新建项目」→ 选择「化学计算」模板(若无可选「Python Notebook」)。
- 在右侧「计算资源」中选择 GPU加速型实例(需消耗tokens,但大幅缩短分子动力学计算时间)。
2. 依赖库安装
在Notebook中输入以下代码安装化学建模核心库(需联网权限):
python
!pip install ase pymatgen MDAnalysis nglview
- ase:原子模拟环境,用于晶体结构构建。
- pymatgen:材料基因组学工具,解析晶体参数。
- nglview:动态分子可视化库。
(二)氧化亚铜晶体建模
- 构建Cu₂O晶体结构
输入代码生成立方晶系Cu₂O(空间群Pn-3m):
python
from ase.build import bulk
cu2o = bulk('Cu2O', crystalstructure='rocksalt', a=4.27, cubic=True)
cu2o.write('cu2o.cif') # 导出CIF文件供后续分析
2. 动态结构优化(DFT预计算)
若需调整晶格参数,可调用DeepSeek集成的 Quantum ESPRESSO 接口(需API密钥):
python
from deepseek import QuantumEspresso
qe = QuantumEspresso(api_key="YOUR_KEY")
qe.set_calculation(type='relax', ecutwfc=50, kpoints=(4,4,4))
result = qe.submit_structure(cu2o) optimized_structure = result.get_optimized_structure()
# 获取优化后结构
(三)分子动力学模拟
- 设置模拟参数
使用ASE配置分子动力学(MD)模拟:
python
from ase.md import Langevin
from ase import units
# 创建动力学模型
dyn = Langevin(
optimized_structure,
timestep=1 * units.fs, # 时间步长1飞秒
temperature=300 * units.K, # 模拟温度300K
friction=0.002 # 摩擦系数
)
# 运行1000步模拟(约消耗0.5 token/千步)
dyn.run(1000)
2. 轨迹文件输出
保存模拟轨迹用于可视化:
python
from ase.io import write
write('cu2o_md.xyz', dyn.atoms) # 导出XYZ格式轨迹
(四)动态可视化与数据分析
1. 交互式3D可视化
在Notebook中直接渲染动态轨迹:
python
import nglview as nv
view = nv.show_ase(dyn.atoms)
view.add_representation('ball+stick', selection='all')
view
拖动滑块查看原子运动轨迹,支持导出为GIF/MP4。
2. 关键物性分析
1) 均方位移(MSD)计算:
python
from MDAnalysis.analysis.msd import EinsteinMSD
msd = EinsteinMSD(universe).run()
plt.plot(msd.times, msd.results.msd)
plt.xlabel('Time (ps)');
plt.ylabel('MSD (Ų)')
2) 径向分布函数(RDF):
python
from ase.geometry import get_distances
rdf, bins = get_distances(optimized_structure, mic=True)
(五) tokens消耗优化策略
- 计算资源选择
- 测试阶段:使用CPU实例运行短时间模拟(如100步),验证参数合理性。
- 正式计算:切换至GPU实例(消耗tokens≈0.2/小时),速度提升5-10倍。
2. 结果缓存与复用
- 将优化后的晶体结构保存至「项目文件」中,避免重复计算。
- 对可视化结果生成缩略图预览,减少全轨迹加载的token消耗。
(六)高级扩展(可选)
- 表面吸附模拟
构建Cu₂O(111)表面模型,研究CO₂吸附行为:
python
from pymatgen.core.surface import SlabGenerator
slab_gen = SlabGenerator(optimized_structure, miller_index=(1,1,1), min_slab_size=10)
slab = slab_gen.get_slab()
2. API自动化流水线
通过DeepSeek API实现批量任务提交:
python
import deepseek client = deepseek
Client(api_key="YOUR_KEY")
job_id = client.submit_job(
type='molecular_dynamics',
structure=cu2o,
steps=5000,
temperature=500
)
注意事项
- 敏感数据处理:涉及未发表成果时,启用「私有计算集群」模式(需额外tokens)。
- 结果验证:对比Materials Project数据库(集成在平台)的标准Cu₂O参数,确认模型合理性。
- 故障恢复:定期点击「保存快照」,避免因断网丢失进度。
通过上述流程,300元tokens可完成约50次中型MD模拟或100+次结构优化。建议从静态晶体建模入手,逐步过渡到动态模拟,以最小成本验证科研假设。
三、非专业小白能用DeepSee platform平台(platform.deepseek.com)做什么?
以下是为非专业用户设计的 DeepSeek平台(platform.deepseek.com) 应用场景详解,针对不同群体提供无需编程或低代码的解决方案,聚焦平台核心功能(建模、数据分析、自动化、可视化):
(一) 中学生
核心需求:直观理解抽象概念,动手实践科学原理
- 化学/物理实验模拟
- 分子结构可视化:使用平台内置的「晶体模型库」直接搜索“水分子”“二氧化碳”,生成3D动态模型,观察键角与振动模式。
- 电路仿真:通过「电子工程模板」拖拽电阻、电容元件,模拟串联电路电流变化,实时显示电压曲线。
晶体模型
2. 地理与生物探索
- 地形建模:上传本地等高线数据,自动生成三维地形图并模拟降雨侵蚀过程(如黄土高原沟壑演化)。
- 生态系统模拟:选择“捕食者-猎物模型”,调整参数观察种群数量波动规律。
操作示例:
进入平台 → 选择「教育模板」→ 点击“化学分子库” → 搜索“Cu₂O” → 调整温度滑块观察晶格热膨胀 → 导出GIF动画插入实验报告。
(二)大学生
核心需求:高效完成课程设计,辅助科研入门
- 工程仿真
- 机械设计:使用「有限元分析模板」导入CAD图纸,自动计算桥梁应力分布,生成热力图报告。
- 数据科学:上传社会调查数据,选择“回归分析”模板,一键生成统计图表与显著性结论。
2. 跨学科协作
- 建筑渲染:将SketchUp模型导入平台,调用「光线追踪引擎」生成建筑日照效果图。
- 经济预测:输入历史GDP数据,选择ARIMA模型预测趋势,对比AI优化后的结果。
操作示例:
上传课程实验数据 → 选择“数据可视化”模板 → 自动生成箱线图/PCA降维图 → 调整配色导出论文插图。
(三)教师
核心需求:教学资源自动化生成,学情精准分析
- 课件开发
- 互动教案:在「虚拟实验室」模块中预置电解水实验参数,学生可在线调整电压观察气泡生成速率。
- 动态试题库:设定知识点(如勾股定理),平台自动生成变式题并附带解题步骤动画。
2. 学生评估
- 作业批改:上传学生论文PDF,启动「语法检查+学术规范检测」,自动标红重复率与格式错误。
- 能力画像:导入历次考试成绩,生成雷达图分析班级知识薄弱点(如立体几何得分率低于60%)。
操作示例:
选择“化学实验模拟” → 设定反应物浓度与温度 → 生成不同条件下的速率曲线对比图 → 嵌入PPT课件。
雷达图
(四)公务员
核心需求:政策效果预演,民生数据洞察
- 城市规划
- 交通流量模拟:导入城市路网数据,模拟早晚高峰拥堵情况,测试单双号限行政策效果。
- 灾害预警:输入区域地质数据,运行「山体滑坡风险评估模型」,生成高风险地段地图。
2. 政策分析
- 经济影响测算:设定减税幅度,平台自动估算地方财政收入变化与企业受益比例。
- 舆情监控:对接政务热线数据,使用「情感分析模板」识别高频投诉领域(如教育、医疗)。
操作示例:
上传人口普查数据 → 选择“老龄化预测”模型 → 调整生育率参数 → 生成未来20年养老压力报告。
(五)工程技术人员
核心需求:快速原型验证,降低试错成本
- 工业设计
- 流体仿真:在「CFD模板」中导入管道设计图,模拟不同流速下的压力损失,优化管径选择。
- 材料测试:选择金属类型与加工工艺,预测抗拉强度与疲劳寿命,替代部分物理实验。
2. 故障诊断
- 设备异常检测:上传传感器振动数据,启动「故障模式识别」,定位潜在轴承磨损或失衡问题。
- 维修方案推荐:输入设备型号与故障代码,调用知识库匹配历史维修案例与备件清单。
操作示例:
选择“电路板热分析”模板 → 导入PCB设计文件 → 设置功耗参数 → 生成散热优化方案(如增加导热孔)。
(六) 商务人员
核心需求:市场快速响应,数据驱动决策
- 用户行为分析
- 购物路径可视化:导入电商点击流数据,生成桑基图显示用户从浏览到下单的转化漏斗。
- 竞品监控:设置关键词(如“新能源车”),自动爬取社交媒体声量并生成情感趋势报告。
2. 营销自动化
- A/B测试模拟:输入广告素材与用户画像,预测不同方案的点击率与转化成本。
- 供应链优化:导入库存与物流数据,运行「动态规划模型」推荐最低成本的仓储分配方案。
操作示例:
上传销售数据 → 选择“客户分群”模板 → 基于RFM模型自动划分VIP客户 → 导出针对性促销策略。
(七) 企业与政府管理人员
核心需求:战略预判,风险管控
- 投资决策
- 并购评估:输入标的公司财务数据,运行蒙特卡洛模拟测算投资回报率波动区间。
- 政策合规:上传合同文本,启动「法律风险扫描」标记反垄断条款与数据隐私风险点。
2. 组织管理
- 人才评估:导入员工绩效数据,使用聚类分析识别高潜力团队与待优化部门。
- 应急预案:设定地震/疫情等场景参数,模拟供应链中断影响并生成BCP(业务连续性计划)。
操作示例:
选择“碳排放测算”模板 → 输入生产数据 → 生成碳足迹报告与达峰路径 → 自动对标行业标准。
(八)小结
通过平台提供的 预制模板、自动化分析、可视化引擎,非专业用户无需编程即可实现复杂任务,大幅降低技术门槛。重点在于选择适配场景的模板,并学会用自然语言调整参数(如“将模拟温度从300K改为500K”)。
四、DeepSeek平台为什么要用tokens计费?还有其他的计费方式吗?
(一)什么是Tokens?
Tokens是大语言模型处理文本的最小单位,相当于AI理解文字的“颗粒度”。不同模型的分词规则不同,但核心逻辑一致:
截自platform.deepseek.com官方网站
- 拆分逻辑
- 中文:通常1个中文字符≈0.6个Tokens(如“人工智能”可能拆为“人”“工”“智”“能”)
- 英文:1个英文字符≈0.3个Tokens(如“ChatGPT”拆为“Chat”+“GPT”)
- 符号与空格:标点、空格等均单独计为Token。
2. 本质作用
Tokens是文本与数字编码的桥梁,模型通过Token将文本转化为可计算的数字序列。例如:输入“你好!今天天气如何?”可能拆分为8个Token(“你”“好”“!”“今天”“天气”“如何”“?”)
(二)为何采用Tokens计费?
大模型的运行成本极高,Tokens计费直接关联资源消耗,体现以下优势:
- 成本精准匹配
- 算力消耗:处理1000 Tokens的文本比100 Tokens复杂10倍,GPU算力与电力成本成比例增加
- 内存与响应时间:长文本需更多内存存储上下文,且生成时间更长
2. 公平性与透明度
- 避免“包月制”下轻度用户补贴重度用户的问题,实现“用多少付多少”
- 用户可清晰预测成本(如限制输出长度max_tokens参数)
3. 商业可持续性
- 大模型训练成本高昂(如GPT-4耗资约1亿美元),按Tokens收费能平衡企业成本与收益
- 以DeepSeek-V3为例,其API价格仅为OpenAI同类服务的1/30,通过低价抢占市场后逐步回调至合理区间
(三)其他计费方式对比
除Tokens计费外,其他常见模式及其优缺点如下:
计费方式 | 优点 | 缺点 | 适用场景 |
订阅制(包月/年) | 适合高频用户,预算可控 | 企业可能亏损(用户过度使用) | 标准化服务(如ChatGPT Plus) |
按时间收费 | 简单直观(如1元/分钟) | 不公平(长文本耗时更高) | 实时音视频处理 |
按功能分级 | 明确需求场景(基础版/专业版) | 难以覆盖长尾需求 | 垂直领域工具(如OCR识别) |
Tokens计费的独特性:
- 混合模式趋势:部分服务采用“订阅+Tokens按量”组合,兼顾稳定与灵活。
- 动态定价策略:如DeepSeek的错峰优惠(夜间价格低至25%),鼓励用户优化调用时间。
(四)Tokens的未来与优化建议
- 未来趋势
- 单Token成本可能随技术优化下降,但计费方式将长期维持
- 缓存机制:高频问题调用缓存答案(如客服场景),降低输入成本
2. 用户优化策略
- 错峰调用:利用夜间优惠时段(如DeepSeek的00:30-08:30价格降50%)
- 精简输入:避免冗长提问,设置max_tokens限制输出长度
- 模型选择:日常任务用低成本模型(如DeepSeek-V3),复杂推理再切换高价模型(如R1)
3. 成本控制技巧
- 教育公益计划:中学生/教师可通过学校邮箱申请免费算力配额(如每月50 token)。
- 批量任务打包:公务员处理区域经济数据时,选择「批量处理模式」较单次提交节省30% tokens。
- 结果复用:企业用户可将常用分析模型保存为“组织资产”,供全员调用避免重复开发。
附图:DeepSeek 大模型(platform.deepseek.com) 收费标准
【免责声明】本文主要内容均源自公开信息和资料,部分内容引用DeepSeek,不作 任何依据,责任自负。