pytorch转onnx模型问题记录

问题:

TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.

虽然在转换中使用 dynamic_axes 可以在转换后的 onnx 模型输入任意尺寸的图像,但如果原模型处理过程中直接使用了 torch.tensor() ,导出的onnx模型对于不同尺寸的图片不能得到正确的处理结果

原代码:

    def normgrid(self, x, H, W):
        """ Normalize coords to [-1,1]. """
        return 2. * (x/(torch.tensor([W-1, H-1], device = x.device, dtype = x.dtype))) - 1.

修改后代码:

def normgrid(self, x, H, W):
    "" Normalize coords to [-1,1]. ""
    # 将W-1和H-1转换为变量
    W_var = torch.tensor(W-1, device=x.device, dtype=x.dtype)
    H_var = torch.tensor(H-1, device=x.device, dtype=x.dtype)
    return 2. * (x / torch.stack([W_var, H_var])) - 1.

前后对比:修改后导出的模型提出的特征点更加准确

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值