PyTorch模型转onnx

pytorch模型转onnx

有torch.jit.trace和torch.jit.script两种方式

trace模式使用用户提供的测试数据输入进去执行模型,然后跟踪执行过程构图,然后保存构建的模型。比较简单,成功率高,缺点是无法支持与输入数据内容相关的动态特性。比如说如果代码有个分支或者循环根据tensor内容而不是python常数选择走哪个分支和确定循环次数,trace根据用户提供的这一个数据执行结果来静态决定。因此如果代码有这种特性,即使导出了模型,模型本身可能也无法得到正确的结果!遇到这种情况,导出过程ONNX只会给一些警告,如:

TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if self.pe.size(0) < step + emb.size(0):
 

script需要把module改造成stript模型,有些模型代码编写的方式导致script不能支持转换,需要修改,导致转换难度更大,成功率较低。但是script模式能解决trace无法支持与输入数据内容相关的动态特性的问题。

jit trace模式 example 1

(optional) Exporting a Model from PyTorch to ONNX and Running it using ONNX Runtime — PyTorch Tutorials 1.11.0+cu102 documentation

# Super Resolution model definition in PyTorch
import torch.nn as nn
import torch.nn.init as init
import torch.onnx
import torch.utils.model_zoo as model_zoo


class SuperResolutionNet(nn.Module):
    def __init__(self, upscale_factor, inplace=False):
        super(SuperResolutionNet, self).__init__()

        self.relu = nn.ReLU(inplace=inplace)
        self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

        self._initialize_weights()

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))
        return x

    def _initialize_weights(self):
        init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv4.weight)


# Create the super-resolution model by using the above model definition.
torch_model = SuperResolutionNet(upscale_factor=3)

print("torch_model:", torch_model)

# # Load pretrained model weights
# model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
# map_location = None
# torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))

# set the model to inference mode
torch_model.eval()

batch_size = 1    # just a random number
# Input to the model
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
torch_out = torch_model(x)

# Export the model
torch.onnx.export(torch_model,               # model being run
                  x,                         # model input (or a tuple for multiple inputs)
                  "super_resolution.onnx",   # where to save the model (can be a file or file-like object)
                  export_params=True,        # store the trained parameter weights inside the model file
                  opset_version=10,          # the ONNX version to export the model to
                  do_constant_folding=True,  # whether to execute constant folding for optimization
                  input_names=['input'],   # the model's input names
                  output_names=['output'],  # the model's output names
                  dynamic_axes={'input': {0: 'batch_size'},    # variable length axes
                                'output': {0: 'batch_size'}})

输入输出的名称不需要像TF那样指定实际模型节点的名称,而是保存出模型onnx的输入输出名称,因此是可以改成其他名称的。

export第二个参数也可以传入字典,例如:{"x":x, "beta":2}, 

多输入的一个特殊example



# Super Resolution model definition in PyTorch
import torch.nn as nn
import torch.nn.init as init
import torch.onnx
import torch.utils.model_zoo as model_zoo


class SuperResolutionNet(nn.Module):
    def __init__(self, upscale_factor, inplace=False):
        super(SuperResolutionNet, self).__init__()

        self.relu = nn.ReLU(inplace=inplace)
        self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

        self._initialize_weights()

    def forward(self, x, datas):
        x1 = datas[0]
        x2 = datas[1]
        x = self.relu(self.conv1(x))
        x1 = self.relu(self.conv1(x1))
        x2 = self.relu(self.conv1(x2))
        x = x + x1 + x2
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))

        return x

    def _initialize_weights(self):
        init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv4.weight)


# Create the super-resolution model by using the above model definition.
torch_model = SuperResolutionNet(upscale_factor=3)

print("torch_model:", torch_model)

# # Load pretrained model weights
# model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
# map_location = None
# torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))

# set the model to inference mode
torch_model.eval()

batch_size = 1    # just a random number
# Input to the model
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
x1 = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
x2 = torch.randn(batch_size, 1, 224, 224, requires_grad=True)

# Export the model
torch.onnx.export(torch_model,               # model being run
                  (x, [x1, x2]),                         # model input (or a tuple for multiple inputs)
                  "super_resolution.onnx",   # where to save the model (can be a file or file-like object)
                  export_params=True,        # store the trained parameter weights inside the model file
                  opset_version=10,          # the ONNX version to export the model to
                  do_constant_folding=True,  # whether to execute constant folding for optimization
                  input_names=['input', 'input1', 'input2'],   # the model's input names
                  output_names=['output'],  # the model's output names
                  dynamic_axes={'input': {0: 'batch_size'},    # variable length axes
                                'output': {0: 'batch_size'}})

以trace方式导出clip模型的example

https://github.com/OFA-Sys/Chinese-CLIP

import torch
from PIL import Image
import torch.nn as nn

import cn_clip.clip as clip
from cn_clip.clip import load_from_name, available_models

print("Available models:", available_models())
# Available models: ['ViT-B-16', 'ViT-L-14', 'ViT-L-14-336', 'ViT-H-14', 'RN50']

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = load_from_name("RN50", device=device, download_root='./')
model.eval()
image = preprocess(Image.open("pokemon.jpeg")).unsqueeze(0).to(device)
text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    # 对特征进行归一化,请使用归一化后的图文特征用于下游任务
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)

    logits_per_image, logits_per_text = model.get_similarity(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # [[1.268734e-03 5.436878e-02 6.795761e-04 9.436829e-01]]


class ImgModelWrapper(nn.Module):
    def __init__(self):
        super(ImgModelWrapper, self).__init__()

        self.model, self.preprocess = load_from_name("RN50", device=device, download_root='./')
        self.model.eval()

    def forward(self, image):
        image_features = self.model.encode_image(image)
        image_features /= image_features.norm(dim=-1, keepdim=True)
        return image_features


class TxtModelWrapper(nn.Module):
    def __init__(self):
        super(TxtModelWrapper, self).__init__()

        self.model, self.preprocess = load_from_name("RN50", device=device, download_root='./')
        self.model.eval()

    def forward(self, image):
        text_features = self.model.encode_text(text)
        text_features /= text_features.norm(dim=-1, keepdim=True)

        return text_features


image = preprocess(Image.open("pokemon.jpeg")).unsqueeze(0).to(device)

img_model = ImgModelWrapper()
img_model.eval()

txt_model = TxtModelWrapper()
txt_model.eval()

torch.onnx.export(img_model,               # model being run
                  image,                         # model input (or a tuple for multiple inputs)
                  "vit_cn_img.onnx",   # where to save the model (can be a file or file-like object)
                  export_params=True,        # store the trained parameter weights inside the model file
                  opset_version=15,          # the ONNX version to export the model to
                  do_constant_folding=False,  # whether to execute constant folding for optimization
                  input_names=['input'],   # the model's input names
                  output_names=['output'],  # the model's output names
                  dynamic_axes={'input': {2: 'hight', 3: 'width'}})

torch.onnx.export(txt_model,               # model being run
                  text,                         # model input (or a tuple for multiple inputs)
                  "vit_cn_txt.onnx",   # where to save the model (can be a file or file-like object)
                  export_params=True,        # store the trained parameter weights inside the model file
                  opset_version=15,          # the ONNX version to export the model to
                  do_constant_folding=False,  # whether to execute constant folding for optimization
                  input_names=['input'],   # the model's input names
                  output_names=['output'],  # the model's output names
                  dynamic_axes={'input': {1: 'seq_len'}})

scaled_dot_product_attention不支持错误

exporting the operator aten::scaled_dot_product_attention to onnx opset version 14 is not supported

docs/source/en/optimization/torch2.0.mdx:33:   PyTorch 2.0 includes an optimized and memory-efficient attention implementation through the [`torch.nn.functional.scaled_dot_product_attention

尝试把pytorch版本降低为1.13.1

或者把使用最新的Preview (Nightly)版本修复了这个问题

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Luchang-Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值