数列极限的性质与判定

上一篇博客中我们引入了一些重要的数集以及其相应的表示方式,同时证明了确界原理。而后用 ϵ − N \epsilon-N ϵN语言刻画出了数列极限的概念,那么如果我们已知一个数列收敛,他又有哪些性质呢?这篇博客介绍了收敛数列的一些重要性质,而后根据这些性质给出了一些数列收敛的充要条件(即是否收敛的判定)

一、收敛数列的性质

1.极限的唯一性:

如果一个数列收敛,则他有且只有一个极限。
很明显如果一个数列收敛它一定是有一个极限的,不妨假设{ a n a_n an}的一个极限是 a a a,这时候只要证明 R R R上除了 a a a的任意一点都不是数列的极限即可,事实上由数列极限的几何意义可知 a a a的任意 U ( a , ϵ ) U(a,\epsilon) U(a,ϵ)邻域之外仅有有限个点,则当 ϵ \epsilon ϵ充分小时可以保证 R R R上的其他点的小邻域中仅有有限个点,这就证明了收敛数列 a n {a_n} an仅有 a a a一个极限。

2.数列极限的保号性与有界性:

保号性:若 l i m n → ∞ a n = a > 0 lim_{n\to \infty}a_n=a>0 limnan=a>0,则对于任意的 a ’ ∈ ( 0 , a ) a^’\in (0,a) a(0,a),一定能找到 N s t . Nst. Nst. n > N n>N n>N时有 a n > a ’ a_n>a^’ an>a
事实上,由数列极限的定义我们很容易可以看出 n → ∞ n\to \infty n时, a n a_n an可以无限的靠近 a a a,只需要取 ϵ < a − a ’ \epsilon<a-a^’ ϵ<aa,就可以找到 N s t . n > N Nst.n>N Nst.n>N a − ϵ ≤ a n ≤ a + ϵ a-\epsilon\leq a_n\leq a+\epsilon aϵana+ϵ,即取出了符合命题要求的 N N N
有界性:收敛数列一定有界
由保号性易证

3.保不等式性与迫敛性

保不等式性:若{ a n a_n an}与{ b n b_n bn}都是收敛数列,且存在一个正整数 N s t . n > N Nst.n>N Nst.n>N时有 a n ≥ b n , a_n\geq b_n, anbn,则一定有 l i m n → ∞ a n ≥ l i m n → ∞ b n lim_{n\to \infty}a_n\geq lim_{n\to \infty}b_n limnanlimnbn
可以通过反证法来证明,如果 l i m n → ∞ a n < l i m n → ∞ b n lim_{n\to \infty}a_n<lim_{n\to \infty}b_n limnan<limnbn,则在{ a n a_n an}的极限 a a a与{ b n b_n bn}的极限 b b b之间一定可以找到一个足够小 ϵ \epsilon ϵ使得 n → ∞ n\to \infty n a n a_n an落在 U ( a , ϵ ) U(a,\epsilon) U(a,ϵ)上, b n b_n bn落在 U ( b , ϵ ) U(b,\epsilon) U(b,ϵ)上,即 n → ∞ n\to \infty n时有 a n < b n a_n<b_n an<bn。很明显与条件相矛盾,故得证。
请注意,这里即使将条件中的" ≥ \geq “改成” > > >",结论中的" ≥ \geq "也不可以改变,例如数列{ 1 n \frac{1}{n} n1}与{ 1 n 2 \frac{1}{n^2} n21}即使满足 1 n > 1 n 2 \frac{1}{n} >\frac{1}{n^2} n1>n21,但他们的极限相等。
迫敛性:若{ a n a_n an}与{ b n b_n bn}都收敛于 a a a,而存在一个正整数 N s t . n > N Nst.n>N Nst.n>N时有 a n ≤ c n ≤ b n a_n\leq c_n\leq b_n ancnbn,则{ c n c_n cn}有极限且极限等于 a a a
利用保不等式性易证迫敛性。
迫敛性是数列收敛的一个很重要的判定条件

4.收敛数列的四则运算

l i m n → ∞ a n = a , l i m n → ∞ b n = b lim_{n\to \infty}a_n=a,lim_{n\to \infty}b_n=b limnan=alimnbn=b,则{ a n + b n a_n+b_n an+bn},{ a n − b n a_n-b_n anbn},{ a n b n a_nb_n anbn}均收敛,且有 l i m n → ∞ a n ± b n = a ± b lim_{n\to \infty}a_n\pm b_n=a\pm b limnan±bn=a±b l i m n → ∞ a n b n = a b lim_{n\to \infty}a_n b_n=ab limnanbn=ab
证明从略。

二、数列的子列

在集合的概念中,我们提出了“子集”这一特殊概念,即如果集合 A A A中的每一个元素都属于集合 B B B,那么称集合 A A A B B B的子集,记作 A ⊂ B A\subset B AB,相应的我们对一个数列也可以提出类似的“子列”概念。要让数列{ a n a_n an}是{ b n b_n bn}的子列,首先要满足{ a n a_n an}中的元素都属于{ b n b_n bn},但是,和集合不同数列中的元素排列是有序的,因此我们在构造子列的过程中希望不破坏原数列的顺序。子列的严格定义如下:
设{ a n a_n an}为数列,{ n k n_k nk}是正整数集 N + N_+ N+的无限子集,且 n 1 < n 2 < . . . < n K n_1<n_2<...<n_K n1<n2<...<nK,则{ a n k a_{n_k} ank}就被称为数列{ a n a_n an}的一个子列。
事实上数列的子列定义对于初学者来说是一个非常晦涩的定义,读者们只需要记住:数列的子列就是不改变原数列的元素顺序,将原数列的一部分元素丢掉留下的新数列即可。
容易证明:数列{ a n a_n an}收敛的充要条件是:{ a n a_n an}的任何子列都是收敛的。这个性质给出了数列收敛的一个判定。
事实上,在数列本身的性质非常难刻画时,可以考虑去寻找子列。

三、数列极限的判定

我们在研究一个数列极限问题之前,必须首先要考虑数列极限的存在性,即数列本身到底收不收敛,只有数列收敛的前提下我们对数列极限的性质讨论才是有意义的,之前我们已经介绍了数列收敛的定义判别法,但定义判别是建立在我们已经知道数列收敛到何处的前提下的,在实际应用中很难做到,下面我们介绍一些更为方便的数列极限判别方法。

1.单调有界定理

在实数域中,单调有界数列一定有极限。
不妨假设数列{ a n a_n an}单调递增且有上界,则由确界原理已知,{ a n a_n an}有上确界 a a a,下面证明 a a a就是数列{ a n a_n an}的极限:
对于任意的 ϵ > 0 \epsilon >0 ϵ>0,都存在数列中的一项 a N a_N aN,有 a − ϵ < a N a-\epsilon <a_N aϵ<aN,而数列{ a n a_n an}是递增数列,当 n ≥ N n\geq N nN时有 a − ϵ < a N ≤ a n < a + ϵ a-\epsilon <a_N \leq a_n<a+\epsilon aϵ<aNan<a+ϵ,这就证得 l i m n → ∞ a n = a lim_{n\to \infty}a_n=a limnan=a.同理也可以对单调递减数列进行类似证明。
事实上,很多的数列极限都可以用单调有界定理来解决,由于数列收敛本身是对无限个元素刻画的,因此有限个元素不满足单调条件不会影响整个结论,即单调有界定理可以写为:
对于数列{ a n a_n an},若存在一个正整数 p s t . pst. pst.{ a n + p a_{n+p} an+p}单调有界,则{ a n a _n an}一定有极限

2.致密性定理

在介绍完单调有界定理之后,我们再来引入一个现阶段读者看来非常难以理解的定理:致密性定理
致密性定理:无穷有界数列一定存在收敛子列
定理的内容很容易理解,任意给出一个无穷有界数列都一定存在一个它的子列是收敛的,下面我们来详细的证明这个定理。
要证明无限数列{ a n a_n an}存在收敛子列,我们只要能够真正的找出一个收敛子列即可,那么如何去取出这个子列就成了我们要考虑的问题,我们考虑数列{ a n + p a_{n+p} an+p}( p ∈ N p\in N pN
Ⅰ. 若对 ∀ p ∈ N \forall p\in N pN有{ a n + p a_{n+p} an+p}都有最大值,当 p = 0 p=0 p=0时,设{ a n a_n an}的最大值为 a n 1 a_{n_1} an1,由假设我们有对 a n 1 a_{n_1} an1后的元素组成的数列也是有最大值的,设{ a n + n 1 a_{n+n_1} an+n1}的最大值为 a n 2 a_{n_2} an2…按此取法取出无穷个项 a n 1 , a n 2 , . . . , a n k a_{n_1},a_{n_2},...,a_{n_k} an1,an2,...,ank并且有 a n 1 ≥ a n 2 ≥ . . . ≥ a n k a_{n_1}\geq a_{n_2}\geq...\geq a_{n_k} an1an2...ank,这样子我们就取出了{ a n a_n an}的一个单调子列,由单调有界定理,这个子列是收敛的;
Ⅱ. 若存在一个 p ∈ N s t . p\in Nst. pNst.数列{ a n + p a_{n+p} an+p}没有最大值,那么对于 ∀ q ∈ N \forall q\in N qN都有{ a n + p + q a_{n+p+q} an+p+q}都没有最大值(读者使用反证法很容易可以证明),则取 n 1 = p + 1 n_1=p+1 n1=p+1,则在 a n 1 a_{n_1} an1后面总存在一项 a n 2 > a n 1 a_{n_2}>a_{n_1} an2>an1,同理这样可以取出一个无穷个项 a n 1 , a n 2 , . . . , a n k a_{n_1},a_{n_2},...,a_{n_k} an1,an2,...,ank并且有 a n 1 < a n 2 < . . . < a n k a_{n_1}< a_{n_2}<...< a_{n_k} an1<an2<...<ank,很明显这个数列也是收敛的,并且收敛于{ a n + p a_{n+p} an+p}的上确界。
上述的证明说明对于任意一个有界数列(数列必居于Ⅰ Ⅱ其一)都能够取出一个收敛子列,即我们证明出了致密性定理的重要性。
致密性定理也是反映实数完备性的一个重要定理,事实上,在之后我们介绍聚点概念与魏尔斯特拉斯聚点定理时读者会对这个定理有更好的理解。

3.柯西(Cauchy)收敛准则

数列{ a n a_n an}收敛的充要条件是:对任意的 ϵ > 0 \epsilon>0 ϵ>0,存在正整数 N N N,使得当 n , m > N n,m>N nm>N时有 ∣ a n − a m ∣ < ϵ |a_n-a_m|<\epsilon anam<ϵ
柯西收敛准则给出了一个判定数列是否收敛的完美解决方法,事实上,之后在我们去研究任何一个对象的收敛情况时,首先可以考虑的就是柯西收敛准则。下面我们给出柯西收敛准则的证明:
先证明必要性,假设数列{ a n a_n an}收敛于 A A A,由数列{ a n a_n an}收敛可以得出,对于 ∀ ϵ > 0 , ∃ N ∈ N + s t . n > N \forall \epsilon>0,\exist N\in N_+st .n>N ϵ>0NN+st.n>N时有 ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ,由三角不等式易有 ∣ a n − a m ∣ = ∣ a n − A − a m + A ∣ ≤ 2 ϵ |a_n-a_m|=|a_n-A-a_m +A|\leq2\epsilon anam=anAam+A2ϵ,必要性既得证。
再证充分性,由 ϵ \epsilon ϵ的任意性易证数列有界,因此由致密性定理可知,{ a n a_n an}一定存在一个收敛子列{ a n k a_{n_k} ank},不妨假设 l i m k → ∞ a n k = A lim_{k\to\infty}a_{n_k}=A limkank=A,由定理条件对于 ∀ ϵ > 0 , ∃ N > 0 s t . m , n > \forall \epsilon>0,\exist N>0st.m,n> ϵ>0N>0st.mn>时有 ∣ a n − a m ∣ < ϵ 2 |a_n-a_m|<\frac{\epsilon}{2} anam<2ϵ,由于此处 m m m的任意性,可取 m = n k m=n_k m=nk,则对于 ϵ \epsilon ϵ,存在一个 N 2 s t . k > N 2 N_2st.k>N_2 N2st.k>N2时有 ∣ a n k − A ∣ < ϵ 2 |a_{n_k}-A|<\frac{\epsilon}{2} ankA<2ϵ,由三角不等式易有 ∣ a n − A ∣ = ∣ a n − a m + a m − A ∣ ≤ ∣ ∣ a n − a m ∣ + ∣ a m − A ∣ < ϵ |a_n-A|=|a_n-a_m+a_m-A|\leq||a_n-a_m|+|a_m-A|<\epsilon anA=anam+amAanam+amA<ϵ充分性即得证。
柯西收敛准则的条件被我们称为柯西条件,他描述了收敛数列各项的值越到后面,彼此之间的距离越是靠近的性质。即只要数列的项数充分大,数列后边的任意两项的绝对值差就可以小于任意的正数( ϵ \epsilon ϵ),柯西收敛准则真正脱离了收敛数列的收敛值来描述收敛数列的特质。

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值