数列极限:数列极限的性质

数学分析笔记——总目录

收敛数列的性质

\quad 这一节,介绍收敛数列的一些性质。

数列极限的唯一性


定理 1(唯一性):收敛数列的极限必定唯一。


证明 1:

\quad 设收敛数列 { x n } \{x_n\} {xn} 的极限为 a a a,下面证明任何数 b ≠ a b\ne a b=a 都不是该数列的极限。

\quad ϵ 0 = 1 2 ∣ b − a ∣ \epsilon_0 = \frac{1}{2}\left|b-a\right| ϵ0=21ba,由数列极限的定义知,在邻域 U ( a ; ϵ 0 ) U(a;\epsilon_0) U(a;ϵ0) 外至多含有数列 { x n } \{x_n\} {xn} 中的有限多项,因而邻域 U ( b , ϵ 0 ) U(b,\epsilon_0) U(b,ϵ0) 中仅含有数列 { x n } \{x_n\} {xn} 中的有限项,由数列极限的等价定义, b b b 不是数列 { x n } \{x_n\} {xn} 的极限。因此收敛数列 { x n } \{x_n\} {xn} 的极限唯一。

证毕

注:证明1的图示如下。

在这里插入图片描述

证明 2:

\quad 设收敛数列 { x n } \{x_n\} {xn} 存在极限 a , b a,b a,b,按照数列极限的定义, ∀ ϵ > 0 \forall \epsilon>0 ϵ>0
∃ N 1 ∈ N + , ∀ n > N 1 : ∣ x n − a ∣ < ϵ 2 ; ∃ N 2 ∈ N + , ∀ n > N 2 : ∣ x n − b ∣ < ϵ 2 , \exists N_{1} \in \mathbb{N}^{+},\forall n>N_1:\left|x_n-a\right| < \frac{\epsilon}{2};\quad \exists N_{2} \in \mathbb{N}^{+},\forall n>N_2:\left|x_n-b\right| < \frac{\epsilon}{2}, N1N+,n>N1:xna<2ϵ;N2N+,n>N2:xnb<2ϵ,
\quad N = max ⁡ { N 1 , N 2 } N=\max \{N_1,N_2\} N=max{N1,N2},利用三角不等式,当 n > N n>N n>N 时,成立
∣ a − b ∣ = ∣ ( a − x n ) + ( x n − b ) ∣ ≤ ∣ x n − a ∣ + ∣ x n − b ∣ < ϵ 2 + ϵ 2 = ϵ \left|a-b\right|=\left|(a-x_n)+(x_n-b)\right| \le \left|x_n-a\right|+\left|x_n-b\right|< \frac{\epsilon}{2} +\frac{\epsilon}{2} =\epsilon ab=(axn)+(xnb)xna+xnb<2ϵ+2ϵ=ϵ
由于 ϵ \epsilon ϵ 可任意接近 0 0 0,因此 a = b a=b a=b

证毕

收敛数列的有界性


定理 2(有界性):收敛数列必定有界。


证明:

设收敛数列 { x n } \{x_n\} {xn} 的极限为 a a a,取 ϵ = 1 \epsilon=1 ϵ=1,则存在 N ∈ N + N \in \mathbb{N}^{+} NN+,使得当 n > N n>N n>N 时,有:
∣ x n − a ∣ < ϵ = 1 , \left|x_n-a\right|<\epsilon=1, xna<ϵ=1,
即当 n > N n>N n>N 时,
a − 1 < x n < a + 1. a-1<x_n<a+1. a1<xn<a+1.
\quad M = max ⁡ { ∣ a 1 ∣ , ∣ a 2 ∣ , ⋯   , ∣ a N ∣ , ∣ a − 1 ∣ , ∣ a + 1 ∣ } M=\max\{|a_1|,|a_2|,\cdots,|a_N|,|a-1|,|a+1|\} M=max{a1,a2,,aN,a1,a+1},显然对于任意的 n ∈ N + n \in \mathbb{N}^{+} nN+ ,成立:
∣ x n ∣ ≤ M . \left|x_n\right| \le M. xnM.

因此,收敛数列 { x n } \{x_n\} {xn} 有界。

证毕

注: 收敛数列必定有界,但有界数列未必收敛。

【示例】:数列 { ( − 1 ) n } \{(-1)^{n}\} {(1)n} 满足有界条件 ∣ ( − 1 ) n ∣ ≤ 1 , n = 1 , 2 , ⋯ |(-1)^{n}|\le 1,n=1,2,\cdots (1)n1,n=1,2,,但数列发散。

数列极限的保序性


定理 3(保序性):设 { x n } \{x_n\} {xn} y n {y_n} yn 均为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ x n = b \underset{n \rightarrow \infty}{\lim}{x_n}=b nlimxn=b,若 a < b a<b a<b,则存在正整数 N N N,使得当 n > N n>N n>N 时,成立
x n < y n . x_n < y_n. xn<yn.


证明:

\quad 根据数列极限的定义,取 ϵ = b − a 2 \epsilon=\frac{b-a}{2} ϵ=2ba,则:
∃ N 1 ∈ N + , ∀ n > N 1 : ∣ x n − a ∣ < ϵ = b − a 2 ⟹ x n < a + ϵ = a + b − a 2 = a + b 2 , \exists N_1 \in \mathbb{N}^{+},\forall n>N_1:|x_n-a|<\epsilon=\frac{b-a}{2} \Longrightarrow x_n <a+\epsilon=a+\frac{b-a}{2} = \frac{a+b}{2}, N1N+,n>N1:xna<ϵ=2baxn<a+ϵ=a+2ba=2a+b,

∃ N 2 ∈ N + , ∀ n > N 2 : ∣ y n − b ∣ < ϵ = b − a 2 ⟹ y n > b − ϵ = b − b − a 2 = a + b 2 . \exists N_2 \in \mathbb{N}^{+},\forall n>N_2:|y_n-b|<\epsilon=\frac{b-a}{2} \Longrightarrow y_n >b-\epsilon=b-\frac{b-a}{2} = \frac{a+b}{2}. N2N+,n>N2:ynb<ϵ=2bayn>bϵ=b2ba=2a+b.

\quad N = max ⁡ { N 1 , N 2 } N=\max \{N_1,N_2\} N=max{N1,N2},当 n > N n>N n>N 时,成立
x n < a + b 2 < y n . x_n<\frac{a+b}{2}<y_n. xn<2a+b<yn.

证毕

推论 1:设 { x n } \{x_n\} {xn} 为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}x_n=a nlimxn=a,若 a < 0 a<0 a<0,则存在正整数 N N N,使得当 n > N n>N n>N 时,成立
x n < a 2 < 0. x_n<\frac{a}{2}<0. xn<2a<0.
推论 2:设 { x n } \{x_n\} {xn} 为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}x_n=a nlimxn=a,若 a > 0 a>0 a>0,则存在正整数 N N N,使得当 n > N n>N n>N 时,成立
x n > a 2 > 0. x_n>\frac{a}{2}>0. xn>2a>0.
证明:推论 1、2 均是定理 3 中相比数列为值为 0 0 0 的常数列的特殊情形。

注意:若 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 均为收敛数列,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ y n = a \underset{n \rightarrow \infty}{\lim}{x_n}=\underset{n \rightarrow \infty}{\lim}{y_n}=a nlimxn=nlimyn=a,无法判定 x n x_n xn y n y_n yn 的大小情况。

【示例】:数列 { 1 n } \{\frac{1}{n}\} {n1} 、数列 { 1 n 3 } \{\frac{1}{n^3}\} {n31}、数列 { 1 n 2 } \{\frac{1}{n^2}\} {n21} 均收敛,且极限值均为 0 0 0

推论 3:设 { x n } \{x_n\} {xn} y n {y_n} yn 均为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ x n = b \underset{n \rightarrow \infty}{\lim}{x_n}=b nlimxn=b,若存在某个正整数 N N N,使得当 n > N n>N n>N 时, x n < y n x_n<y_n xn<yn,则
a ≤ b . a \le b. ab.
证明:反证法。

\quad 假定 a > b a>b a>b,则由数列极限的保序性定理 3,存在正整数 N 1 N_1 N1,使得当 n > N 1 n>N_1 n>N1 时,成立 x n > y n x_n>y_n xn>yn,又因为存在某个正整数 N 2 N_2 N2,使得当 n > N 2 n>N_2 n>N2 时, x n < y n x_n<y_n xn<yn,取 N = max ⁡ { N 1 , N 2 } N=\max \{N_1,N_2\} N=max{N1,N2},则当 n > N n>N n>N 时既有 x n > y n x_n>y_n xn>yn,又有 x n < y n x_n<y_n xn<yn,从而产生矛盾,因此 a ≤ b a \le b ab

证毕

推论 4:设 { x n } \{x_n\} {xn} y n {y_n} yn 均为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ x n = b \underset{n \rightarrow \infty}{\lim}{x_n}=b nlimxn=b,若存在某个正整数 N N N,使得当 n > N n>N n>N 时, x n ≤ y n x_n \le y_n xnyn,则
a ≤ b . a \le b. ab.
证明 1:反证法(同推论 3的证明)

\quad 假定 a > b a>b a>b,则由数列极限的保序性定理 3,存在正整数 N 1 N_1 N1,使得当 n > N 1 n>N_1 n>N1 时,成立 x n > y n x_n>y_n xn>yn,又因为存在某个正整数 N 2 N_2 N2,使得当 n > N 2 n>N_2 n>N2 时, x n ≤ y n x_n \le y_n xnyn,取 N = max ⁡ { N 1 , N 2 } N=\max \{N_1,N_2\} N=max{N1,N2},则当 n > N n>N n>N 时既有 x n > y n x_n>y_n xn>yn,又有 x n ≤ y n x_n \le y_n xnyn,从而产生矛盾,因此 a ≤ b a \le b ab

证毕

注:推论 4,在一些参考书中也被称为 数列极限的保序性

数列极限的夹逼性


定理 4(夹逼性):设 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 均为收敛数列,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ y n = a \underset{n \rightarrow \infty}{\lim}{x_n}=\underset{n \rightarrow \infty}{\lim}{y_n}=a nlimxn=nlimyn=a,若存在 N 0 ∈ N + N_0 \in \mathbb{N}^{+} N0N+,使得当 n > N 0 n>N_0 n>N0 时,成立
x n ≤ z n ≤ y n , x_n \le z_n \le y_n, xnznyn,
则数列 { z n } \{z_n\} {zn} 收敛,且 lim ⁡ n → ∞ z n = a \underset{n \rightarrow \infty}{\lim}{z_n}=a nlimzn=a


证明:

\quad 根据数列极限的定义,对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0
∃ N 1 ∈ N + , ∀ n > N 1 : ∣ x n − a ∣ < ϵ ⟹ x n > a − ϵ , \exists N_1 \in \mathbb{N}^{+},\forall n>N_1:|x_n-a|<\epsilon \Longrightarrow x_n>a-\epsilon, N1N+,n>N1:xna<ϵxn>aϵ,

∃ N 2 ∈ N + , ∀ n > N 2 : ∣ y n − a ∣ < ϵ ⟹ y n < a + ϵ . \exists N_2 \in \mathbb{N}^{+},\forall n>N_2:|y_n-a|<\epsilon \Longrightarrow y_n<a+\epsilon. N2N+,n>N2:yna<ϵyn<a+ϵ.

\quad N = max ⁡ { N 1 , N 2 } N=\max \{N_1,N_2\} N=max{N1,N2},当 n > N n>N n>N 时,成立
a − ϵ < x n ≤ z n ≤ y n < a + ϵ , a-\epsilon<x_n \le z_n \le y_n<a+\epsilon, aϵ<xnznyn<a+ϵ,
因此 lim ⁡ n → ∞ z n = a \underset{n \rightarrow \infty}{\lim}{z_n}=a nlimzn=a.

证毕

数列极限的运算性质——四则运算

\quad 下面,讨论数列极限的运算性质,即数列极限的四则运算。

数列极限的和、差运算


定理 5:设 { x n } \{x_n\} {xn} y n {y_n} yn 均为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ x n = b \underset{n \rightarrow \infty}{\lim}{x_n}=b nlimxn=b α , β ∈ R \alpha,\beta \in \mathbb{R} α,βR,则
lim ⁡ n → ∞ ( α x n ± β y n ) = α a ± β b . \lim_{n \rightarrow \infty}{(\alpha x_n \pm \beta y_n)} = \alpha a\pm \beta b. nlim(αxn±βyn)=αa±βb.


证明:

\quad 根据数列极限的定义,对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0
∃ N 1 ∈ N + , ∀ n > N 1 : ∣ x n − a ∣ < ϵ ; ∃ N 2 ∈ N + , ∀ n > N 2 : ∣ y n − b ∣ < ϵ , \exists N_{1} \in \mathbb{N}^{+},\forall n>N_1:\left|x_n-a\right| < \epsilon;\quad \exists N_{2} \in \mathbb{N}^{+},\forall n>N_2:\left|y_n-b\right| < \epsilon, N1N+,n>N1:xna<ϵ;N2N+,n>N2:ynb<ϵ,
\quad N = max ⁡ { N 1 , N 2 } N = \max \{N_1,N_2\} N=max{N1,N2},利用三角不等式,当 n > N n>N n>N 时,成立
∣ ( α x n + β y n ) − ( α a + β b ) ∣ = ∣ α ( x n − a ) + β ( y n − b ) ∣ ≤ ∣ α ( x n − a ) ∣ + ∣ β ( y n − b ) ∣ ≤ ( ∣ α ∣ + ∣ β ∣ ) ϵ , \begin{aligned} \left|(\alpha x_n + \beta y_n) - (\alpha a + \beta b)\right| &= \left|\alpha (x_n-a) + \beta (y_n-b)\right| \\ & \le \left|\alpha(x_n-a)\right| +\left|\beta(y_n-b)\right| \\ & \le \left(\left|\alpha\right| + \left|\beta\right|\right)\epsilon, \end{aligned} (αxn+βyn)(αa+βb)=α(xna)+β(ynb)α(xna)+β(ynb)(α+β)ϵ
lim ⁡ n → ∞ α x n + β y n = α a + β b \underset{n \rightarrow \infty}{\lim}{\alpha x_n + \beta y_n} = \alpha a + \beta b nlimαxn+βyn=αa+βb,同理 lim ⁡ n → ∞ α x n − β y n = α a − β b \underset{n \rightarrow \infty}{\lim}{\alpha x_n - \beta y_n} = \alpha a - \beta b nlimαxnβyn=αaβb

证毕

数列极限的乘运算


定理 6:设数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 均为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ y n = b \underset{n \rightarrow \infty}{\lim}{y_n}=b nlimyn=b,则
lim ⁡ n → ∞ x n y n = a b . \lim_{n \rightarrow \infty}{x_n y_n} = ab. nlimxnyn=ab.


证明:

lim ⁡ n → ∞ x n = a \quad \underset{n \rightarrow \infty}{\lim}{x_n} = a nlimxn=a,则数列 { x n } \{x_n\} {xn} 有界,即 ∃ M > 0 \exists M>0 M>0,使得对任意的 n n n
∣ x n ∣ < M , |x_n| <M\text{,} xn<M

lim ⁡ n → ∞ y n = b \quad \underset{n \rightarrow \infty}{\lim}{y_n} = b nlimyn=b,则对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ N ∈ N + \exists N \in \mathbb{N}^{+} NN+,使得当 n > N n>N n>N 时有
∣ y n − b ∣ < ϵ , \left|y_n-b\right| < \epsilon , ynb<ϵ
因此
∣ x n y n − a b ∣ = ∣ x n ( y n − b ) + b ( x n − a ) ∣ ≤ ∣ x n ( y n − b ) ∣ + ∣ b ( x n − a ) ∣ < ( ∣ M ∣ + ∣ b ∣ ) ϵ 。 \begin{aligned} \left|x_ny_n - ab\right| &= \left|x_n\left(y_n-b\right)+b(x_n-a)\right| \\ & \le \left|x_n(y_n-b)\right| + \left|b(x_n-a)\right| \\ & < (\left|M\right|+\left|b\right|)\epsilon。 \end{aligned} xnynab=xn(ynb)+b(xna)xn(ynb)+b(xna)<(M+b)ϵ
lim ⁡ n → ∞ x n y n = a b \underset{n \rightarrow \infty}{\lim}{x_n y_n} = ab nlimxnyn=ab

证毕

数列极限的商运算


定理 7:设数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 均为收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ y n = b ≠ 0 \underset{n \rightarrow \infty}{\lim}{y_n}=b \ne 0 nlimyn=b=0,则
lim ⁡ n → ∞ x n y n = a b . \lim_{n \rightarrow \infty}{\frac{x_n}{y_n}} = \frac{a}{b}. nlimynxn=ba.


证明:

lim ⁡ n → ∞ x n = a \quad \underset{n \rightarrow \infty} {\lim}{x_n}=a nlimxn=a lim ⁡ n → ∞ y n = b ≠ 0 \underset{n \rightarrow \infty} {\lim}{y_n}=b \ne 0 nlimyn=b=0,则 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ N 1 ∈ N + \exists N_1\in \mathbb{N}_{+} N1N+,使得当 n > N n>N n>N 时,成立
∣ x n − a ∣ < ϵ , \left|x_n-a\right|<\epsilon, xna<ϵ
∃ N 2 ∈ N + \quad \exists N_2 \in \mathbb{N}_{+} N2N+,使得当 n > N 2 n>N_2 n>N2 时,成立
∣ y n − a ∣ < ϵ , \left|y_n-a\right|<\epsilon, yna<ϵ

\quad 由数列极限的保序性知, ∃ N 3 ∈ N + \exists N_3 \in \mathbb{N}_{+} N3N+,使得当 n > N 3 n>N_3 n>N3 时,成立
∣ y n ∣ > ∣ b 2 ∣ 。 \left|y_n\right| >|\frac{b}{2}|。 yn>2b
\quad 因此取 N = max ⁡ { N 1 , N 2 , N 3 } N=\max\{N_1,N_2,N_3\} N=max{N1,N2,N3},则当 n > N n>N n>N 时,成立
∣ x n y n − a b ∣ = ∣ b x n − a y n b y n ∣ = ∣ b ( x n − a ) + a ( b − y n ) b y n ∣ < 2 ∣ b ( x n − a ) + a ( b − y n ) b 2 ∣ < 2 ( ∣ b ∣ + ∣ a ∣ ) ϵ b 2 。 \begin{aligned} \left|\frac{x_n}{y_n}-\frac{a}{b}\right| &= \left|\frac{bx_n-ay_n}{by_n}\right|= \left|\frac{b \left(x_n-a\right) + a\left(b-y_n\right)}{by_n}\right| \\ &< 2\left|\frac{b \left(x_n-a\right) + a\left(b-y_n\right)}{b^2}\right| \\ &< \frac{2(|b|+|a|)\epsilon}{b^2}。 \end{aligned} ynxnba=bynbxnayn=bynb(xna)+a(byn)<2b2b(xna)+a(byn)<b22(b+a)ϵ
因此 lim ⁡ n → ∞ x n y n = a b \underset{n \rightarrow \infty}{\lim}{\frac{x_n}{y_n}}=\frac{a}{b} nlimynxn=ba

\quad

证毕

\quad 结合 定理 3定理 7,有如下结论。


定理 8:设 { x n } \{x_n\} {xn} 为一收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}x_n=a nlimxn=a,若 a > 0 a>0 a>0,则存在正整数 N N N,使得当 n > N n>N n>N 时,成立
a 2 < x n < 2 a . \frac{a}{2}<x_n<2a. 2a<xn<2a.


证明:

\quad ϵ 1 = a 2 \epsilon_1=\frac{a}{2} ϵ1=2a,由数列极限的定义,存在正整数 N 1 N_1 N1,使得当 n > N 1 n>N_1 n>N1 时,成立
x n > a − ϵ 1 = a − a 2 = a 2 > 0 , x_n>a-\epsilon_1=a-\frac{a}{2}=\frac{a}{2}>0, xn>aϵ1=a2a=2a>0
由于 lim ⁡ n → ∞ x n = a ≠ 0 \underset{n \rightarrow \infty}{\lim}x_n=a\ne0 nlimxn=a=0,所以 lim ⁡ n → ∞ 1 x n = 1 a \underset{n \rightarrow \infty}{\lim}\frac{1}{x_n}=\frac{1}{a} nlimxn1=a1。取 ϵ 2 = 1 2 a \epsilon_2=\frac{1}{2a} ϵ2=2a1,由数列极限的定义,存在正整数 N 2 N_2 N2,使得当 n > N 2 n>N_2 n>N2 时,成立
1 x n > 1 a − ϵ 2 = 1 2 a , x n < 2 a . \frac{1}{x_n}>\frac{1}{a}-\epsilon_2=\frac{1}{2a},x_n<2a. xn1>a1ϵ2=2a1xn<2a.
\quad N = max ⁡ { N 1 , N 2 } N=\max\{N_1,N_2\} N=max{N1,N2},当 n > N n>N n>N 时,成立
a 2 < x n < 2 a . \frac{a}{2}<x_n<2a. 2a<xn<2a.

证毕

同理,有如下结论。


定理 9:设 { x n } \{x_n\} {xn} 为一收敛数列,且 lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}x_n=a nlimxn=a,若 a < 0 a<0 a<0,则存在正整数 N N N,使得当 n > N n>N n>N 时,成立
2 a < x n < a 2 . 2a<x_n<\frac{a}{2}. 2a<xn<2a.


参考文献

[1] B. A. 卓里奇. 数学分析 第一卷. 第7版. 北京:高等教育出版社.2019.2.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社. 2010.7.
[3] 陈纪修,於崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社. 2004.7.
[4] 谢惠民,恢自求,易法槐等. 数学分析习题课讲义 上册. 北京:高等教育出版社. 2003.7.10.
[5] 常庚哲,史济怀. 数学分析教程 上册. 第3版. 合肥:中国科学技术大学出版社. 2012.8.
[6] 菲赫金哥尔茨. 微积分学教程 第一卷. 第8版. 北京:高等教育出版社. 2006.01.

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值