GNN流程:
1、聚合
2、更新
3、循环
假定现在的数据环境如下图所示,A、B、C、D、E代表节点,互相之间的边连线代表节点间的关系,节点旁边的括号数字代表特征。
1、聚合
拿节点A来举例:
1)单纯靠A自己一个节点的特征无法准确判断A节点的类别。
2)A跟B、C、D有联系,通过B、C、D可以判断A。(类似近朱者赤,比方说判断A同学学习成绩好不好,但看A来讲不知道,但B、C、D都好,那大概率A的成绩也好)
经过一次聚合后,聚合得到的信息:
邻居信息N=a·(2,2,2,2,2) + b· (3,3,3,3,3)+ c·(4,4,4,4,4)
//a、b、c为常数,可以通过模型训练来定,也可以自己手动定
(而且经常作为论文的改进点,比方说B对A来说很重要,常数b就设的大一点)
总结:把邻居的特征信息贴到自己身上来,作为自身特征信息的补足。