最小二乘法

最小二乘法是一种数学优化技术,常用于曲线拟合和数据建模,通过最小化误差的平方和找到最佳函数匹配。在示例中,通过求解线性方程组找到使方差最小的直线方程,即`y=3.5+1.4x`。在一般线性情况下,最小二乘解可以通过矩阵运算求得,如使用A的广义逆矩阵。最小二乘法与梯度下降法都是优化目标函数的手段,但最小二乘法更关注平方损失函数的最小化。
摘要由CSDN通过智能技术生成

    太久没有推导公式了,最近在看文献的时候好多数学知识都忘了,准备平时多写几篇博文,记录一下这些数学基础理论。


最小二乘法的定义:

 所谓的最小二乘法(generalized least squares)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。 最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。 最小二乘法通常用于曲线拟合。很多其他的优化问题也可通过最小化能量最大化熵用最小二乘形式表达。

  比如从最简单的一次函数y=kx+b讲起已知坐标轴上有些点(1.1,2.0),(2.1,3.2),(3,4.0),(4,6),(5.1,6.0),求经过这些点的图象的一次函数关系式。当然这条直线不可能经过每一个点,我们只要做到5个点到这条直线的距离的平方和最小即可,这这就需要用到最小二乘法的思想.然后就用线性拟合来求。一般只用于建模。

示例:

某次实验得到了四个数据点 {\displaystyle (x,y)}(x, y){\displaystyle (1,6)}(1,6){\displaystyle (2,5)}(2,5){\displaystyle (3,7)}(3,7){\displaystyle (4,10)}(4,10)(右图中红色的点)。我们希望找出一条和这四个点最匹配的直线 {\displaystyle y=\beta _{1}+\beta _{2}x}y=\beta _{1}+\beta _{2}x,即找出在某种“最佳情况”下能够大致符合如下超定线性方程组的 {\displaystyle \beta _{1}}\beta _{1} 和 {\displaystyle \beta _{2}}\beta _{2}

{\displaystyle {\begin{alignedat}{4}\beta _{1}+1\beta _{2}&&\;=\;&&6&\\\beta _{1}+2\beta _{2}&&\;=\;&&5&\\\beta _{1}+3\beta _{2}&&\;=\;&&7&\\\beta _{1}+4\beta _{2}&&\;=\;&&10&\\\end{alignedat}}} {\begin{alignedat}{4}\beta _{1}+1\beta _{2}&&\;=\;&&6&\\\beta _{1}+2\beta _{2}&&\;=\;&&5&\\\beta _{1}+3\beta _{2}&&\;=\;&&7&\\\beta _{1}+4\beta _{2}&&\;=\;&&10&\\\end{alignedat}}

最小二乘法采用的手段是尽量使得等号两边的方差最小,也就是找出这个函数的最小值:

{\displaystyle {\begin{aligned}S(\beta _{1},\beta _{2})=&\left[6-(\beta _{1}+1\beta _{2})\right]^{2}+\left[5-(\beta _{1}+2\beta _{2})\right]^{2}\\&+\left[7-(\beta _{1}+3\beta _{2})\right]^{2}+\left[10-(\beta _{1}+4\beta _{2})\right]^{2}.\\\end{aligned}}}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值