周志华 《机器学习》 习题3 (Matlab实现)

本文介绍了如何使用Matlab实现对率回归(逻辑斯蒂回归)和线性判别分析。针对一组区分好瓜与坏瓜的数据,虽然逻辑斯蒂回归的效果仅属一般,但线性判别分析的结果并不理想。
摘要由CSDN通过智能技术生成

习题3.3 与 习题 3.5 编程实现对率回归、线性判别分析

原始数据:


其中‘+’表示好瓜,‘o'表示坏瓜


对率回归即线性判别分析原理见书。

以下为代码及结果,Matlab实现:

1、对率回归(逻辑斯蒂回归)

clear all; clc;

x = importdata('ex4x.txt');
y = importdata('ex4y.txt');

[m,n] = size(x);
sample_num = m;
x = [x,ones(m,1)];

figure;   %画初始分布图
pos = find(y == 1);neg = find(y == 0);
plot(x(pos,1),x(pos,2),'+');
hold on;
plot(x(neg,1),x(neg,2),'o');
xlabel('density');
ylabel('sweet');

g = @(z)(exp(z) ./ (1.0 + exp(z))); 
beta = zeros(n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值