R语言生存分析可视化:探索事件发生率

41 篇文章 11 订阅 ¥59.90 ¥99.00
本文介绍了如何在R语言中进行生存分析,包括使用特定包执行分析、创建生存对象、拟合生存曲线,以及通过Kaplan-Meier曲线和Cox比例风险模型进行可视化,从而探索和解释事件发生率。
摘要由CSDN通过智能技术生成

生存分析是一种统计方法,用于分析事件发生的时间。在R语言中,我们可以使用多种包和函数来执行生存分析,并通过可视化方法直观地呈现结果。本文将介绍如何使用R语言进行生存分析,并展示如何利用可视化工具来解释和探索事件发生率。

首先,我们需要加载所需的R包。在本文中,我们将使用survivalsurvminer包来执行生存分析和可视化。

# 加载所需的包
library(survival)
library(survminer)

接下来,我们需要准备我们的数据。生存分析通常涉及到一个时间变量和一个二元变量,表示事件是否发生。在本文中,我们将使用一个示例数据集,其中包含患者的生存时间和是否存活的信息。

# 准备数据
data <- lung # 使用lung数据集作为示例

# 查看数据结构
head(data)

一旦我们加载了数据,我们可以开始进行生存分析。首先,我们将使用Surv()函数创建一个生存对象,指定生存时间和事件发生变量。

# 创建生存对象
surv_object <- Surv(time = data$time, event = data$status
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值