图数据集Zachary‘s karate club network详细介绍,包括其在NetworkX、PyG上的获取和应用方式

本文介绍了空手道俱乐部数据集,该数据集描述了空手道俱乐部会员社交关系。先阐述原始数据,包括图的节点、边及特征等信息,还提及会员因冲突站队情况。接着介绍NetworkX中的数据,为无向图。最后说明PyG中的数据,基于NetworkX数据修改,每个节点有特定标签和特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录

1. 原始数据

维基百科:Zachary’s karate club - Wikipedia

原始论文:An Information Flow Model for Conflict and Fission in Small Groups

数据集中只有一张图。
该图描述了一个空手道俱乐部会员的社交关系,以34名会员作为节点,如果两位会员在俱乐部之外仍保持社交关系,则在节点间增加一条边。
每个节点具有一个34维的特征向量,一共有78条边。
在收集数据的过程中,管理人员 John A 和 教练 Mr. Hi(化名)之间产生了冲突,会员们选择了站队,一半会员跟随 Mr. Hi 成立了新俱乐部,剩下一半会员找了新教练或退出了俱乐部。通过收集到的图数据,Zachary 进行了分类,除1名会员外都分类正确。

2. NetworkX中的数据

官方文档:networkx.generators.social.karate_club_graph

无向图。一共有34个节点,78条无向、无权、无特征的边。节点具有club属性,取值为 Mr. Hi 或 Officer。

数据获取代码:G = nx.karate_club_graph()

数据文件来源:UCINET IV Datasets

3. PyG中的数据

官方文档:torch_geometric.datasets.KarateClub
源代码:torch_geometric.datasets.karate — pytorch_geometric 1.7.0 documentation

数据文件来源于NetworkX的karate_club_graph,在其基础上做了修改。也是34个节点,78条无向边(edge_index宽为156)。
(官方文档中说是156条边(指无向图边×2的数目))

基于论文 Kipf, T., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. ArXiv, abs/1609.02907.(就是GCN那篇论文):
用 modularity-based clustering 给每个节点赋予一个四分类的标签(0 1 2 3)。在每一类中选一个节点作为该标签类的真实值节点,是train_mask为True对应索引的节点。(参考源代码:y是通过 community 的 community_louvain 计算出来的。然后将每一类的第一个节点作为真实值节点。)
每个节点有一个34维的特征(x),是独热编码的形式。(node ordering是随机的)

获取数据的方式:

from torch_geometric.datasets import KarateClub
dataset = KarateClub()
data = dataset[0]
print(data)

Data(edge_index=[2, 156], train_mask=[34], x=[34, 34], y=[34])

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值