如何调用GLM-4 API实现智能问答

本文介绍了如何通过注册智谱AI获取APIkey,然后使用Python实现GLM-4API进行智能问答,包括使用SDK和直接请求的方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录

GLM系列大模型是智谱AI提供的系列语言模型,GLM-4没有开源,只提供了API。本文介绍如何用Python语言调用GLM-4 API实现智能问答。

智谱AI为所有用户提供了18元免费额度,可以试用。

1. 获得API key

注册并登录智谱AI开放平台

在这里插入图片描述
点击“查看API key”

在这里插入图片描述
在这里插入图片描述
复制的API key用于调用API

2. 撰写代码并实现提问和回答

2.1 使用SDK

首先下载包:pip install zhipuai

使用以下命令即可获得回答:

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your api key")
response = client.chat.completions.create(
    model="glm-4",
    messages=[
        {
            "role": "user",
            "content": "请你作为童话故事大王,写一篇短篇童话故事,故事的主题是要永远保持一颗善良的心,要能够激发儿童的学习兴趣和想象力,同时也能够帮助儿童更好地理解和接受故事中所蕴含的道理和价值观。"
        }
    ],
    top_p=0.7,
    temperature=0.9,
    stream=False,
    max_tokens=2000,
)
print(response.choices[0].message.content)

2.2 使用requests直接请求

略,待补。

3. 参考资料

  1. 官方文档:‍​⁢​⁡​​‍‍‍​​⁣⁤‌⁣⁡‬⁡‌‬⁣‌​‬​⁤‍‬‬​⁡‬⁣​⁣⁡⁢⁢⁣‍⁡⁡⁢GLM-4 API 系列 - 飞书云文档
### Ollama Chatchat 技术详解 Ollama 是一种用于构建聊天机器人的框架,能够通过集成不同的大语言模型来实现智能化对话功能。当提到 ollama chatchat 时,实际上是指基于 Ollama 构建并优化过的聊天应用,该应用程序可以处理自然语言请求并向用户提供有用的信息。 #### 安装与配置 为了创建一个高效的 PDF 聊天机器人,首先需要安装 Ollama 并设置环境。这一步骤确保了后续操作可以在本地环境中顺利执行[^1]。完成安装之后,可以通过 API 接口调用特定的大规模预训练语言模型来进行交互测试。例如: ```bash curl http://localhost:11434/api/chat \ -d '{ "model": "llama2", "messages": [ { "role": "user", "content": "为什么天空是蓝色的?" } ] }' ``` 这段命令展示了如何向运行于本地服务器上的 LLaMA2 模型发送消息,并获取其返回的回答[^2]。 #### 下载与部署模型 对于希望快速上手或有特殊需求的应用场景来说,可以直接从 ModelScope 上下载已经训练好的模型文件到本地目录中。这样不仅可以节省时间成本,还能保证所使用的版本是最新的稳定版之一。具体做法如下所示: ```bash modelscope download --model=LLM-Research/glm-4-9b-chat-GGUF --local_dir . ``` 这条指令会把 glm-4-9b-chat-Q5_K.gguf 文件保存至当前工作路径下,以便随时加载使用[^3]。 #### 应用实例:PDF 文档问答系统 利用上述技术和工具组合起来就可以搭建起一套完整的 PDF 文档问答解决方案。用户上传任意格式的 PDF 文件后,程序会对其中的文字内容进行解析提取;接着借助强大的 NLP 模型理解问题意图,在文档内搜索匹配度最高的片段作为答案反馈给提问者。整个过程自动化程度高、效率快且准确性好,极大地提高了信息检索体验。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值