Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning

在这里插入图片描述

一、文章主要内容总结

本文提出了首个基于统一多模态思维链(CoT)的奖励模型UNIFIEDREWARD-THINK,旨在通过显式长链推理提升多模态奖励模型的可靠性和鲁棒性。核心方法分为三个训练阶段:

  1. 冷启动阶段:使用少量图像生成偏好数据蒸馏GPT-4o的推理过程,使模型学习CoT推理的格式和结构。
  2. 拒绝采样阶段:利用大规模统一多模态偏好数据激发模型在各类视觉任务中的推理能力,保留正确推理样本以强化准确模式。
  3. 组相对策略优化(GRPO)阶段:对错误预测样本进行基于GRPO的强化微调,推动模型探索多样化推理路径,优化推理准确性。

实验表明,引入长CoT推理显著提升了奖励信号的准确性,且模型在掌握CoT后即使无需显式推理痕迹,也能通过隐式推理超越现有基线。

二、文章创新点

  1. 首个统一多模态CoT奖励模型:实现了视觉理解与生成任务的多维度、分步长链推理,突破了传统奖励模型仅提
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值