做Curve Fitting的时候通常会有以下信息,大家不解其意,在此做简单介绍。
Results :显示当前拟合的详细结果, 包括拟合类型 (模型、样条或插值函数)、拟合系数以及参数匹配的95% 置信范围, 以及适合统计的这些优点;
SSE: 错误的平方和。此统计量测量响应的拟合值的偏差。接近0的值表示更好的匹配。
R-square 表示:多重测定系数。数值的大小在0到1之间,越接近1,表明方程的变量对y的解释能力越强。
Adjusted R-square:自由度调整 r 平方。接近1的值表示更好的匹配。当您向模型中添加附加系数时, 它通常是适合质量的最佳指示器。
RMSE:均方根误差。接近0的值表示更好的匹配。
举例:
数据:x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]
数据: y=[5 10 15 20 25 30 35 40 45 50]
进行数据拟合:
先来看degree为1的时候:
Linear model Poly1:
f(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = 0.2274 (0.2006, 0.2543)
p2 = -23.9 (-30.19, -17.6)
Goodness of fit:
SSE: 42.32
R-square: 0.9795
Adjusted R-square: 0.9769
RMSE: 2.3
拟合程度并不是很好;
接着来看degree为2的时候:
Linear model Poly2:
f(x) = p1*x^2 + p2*x + p3
Coefficients (with 95% confidence bounds):
p1 = 0.0005637 (0.0005559, 0.0005715)
p2 = -0.01374 (-0.01711, -0.01037)
p3 = -0.3867 (-0.7293, -0.04405)
Goodness of fit:
SSE: 0.01016
R-square: 1
Adjusted R-square: 1
RMSE: 0.03809
可以看到,如果我们使用多项式拟合,degree为2的时候,拟合程度是很不错的;
如果觉得本文写的还不错的伙伴,可以给个关注一起交流进步,如果有在找工作且对阿里感兴趣的伙伴,也可以发简历给我进行内推: