A semantic-driven coupled network for infrared and visible image fusion(2024InfFus)
现有方法存在的问题
1.传统方法需要手工设计融合规则;时间消耗较高。
2.现有的图像融合方法只关注像素级融合,忽略了场景中的高级语义信息。
研究方法
整体框架
由一个双分支共享编码器和两个解码器(结构相同、参数不同)组成。
联合优化
验证策略
1.将融合网络的输出与红外图像一起输入到分割网络中,获取基于融合图像的分割结果,并计算这些结果与真实分割标签之间的mIoU值。
2.使用这个mIoU值来动态调整一个基于mIoU的语义度量权重,该权重用于自适应地平衡训练过程中联合优化(融合损失和语义损失)和驱动优化(验证损失)的权重分配。
这样,随着分割网络性能的提升,