【论文阅读】SDCFusion:A semantic-driven coupled network for infrared and visible image fusion

A semantic-driven coupled network for infrared and visible image fusion(2024InfFus)

现有方法存在的问题

1.传统方法需要手工设计融合规则;时间消耗较高。

2.现有的图像融合方法只关注像素级融合,忽略了场景中的高级语义信息。

研究方法

整体框架

由一个双分支共享编码器和两个解码器(结构相同、参数不同)组成。

联合优化

验证策略

 
1.将融合网络的输出与红外图像一起输入到分割网络中,获取基于融合图像的分割结果,并计算这些结果与真实分割标签之间的mIoU值。

2.使用这个mIoU值来动态调整一个基于mIoU的语义度量权重,该权重用于自适应地平衡训练过程中联合优化(融合损失和语义损失)和驱动优化(验证损失)的权重分配。

这样,随着分割网络性能的提升,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值