[轨道力学] 轨道力学期末复习

本文详细介绍了轨道力学的基础概念,包括质点动力学、牛顿万有引力定律、二体问题,重点阐述了运动方程、角动量守恒、能量定律以及轨道类型如圆、椭圆、抛物线和双曲线轨道的特性。此外,还探讨了近焦点坐标系、三维空间中的轨道、初始轨道确定方法以及轨道机动策略,如霍曼转移和双椭圆转移。最后,文章提及了行星际轨道的计算,包括行星交会窗口和影响球的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

文字版,用于提供关键字
word 复制到 markdown 就有的乱码……我也没办法

第1章 质点动力学

1.1 引言

1.2 运动学 v=r ̇ a=v ̇=r ̈ {█(v_x=x ̇@v_y=y ̇@v_z=z ̇ )┤ {█(a_x=(v_x ) ̇=x ̈@a_x=(v_x ) ̇=x ̈@a_z=(v_z ) ̇=z ̈ )┤ 设 u ̂_t 为单位矢量,与运动轨迹相切。
v=vu ̂_t ds=vdt v=s ̇ 注意: v≠r ̇ 即 r 导数的模不等于 r 模的导数。

a=a_t u ̂_t+a_n u ̂_n a_t=v ̇=s ̈,a_n=v^2/ρ ρ 为曲率半径,即质点P到曲线路径中心的距离。
单位法向矢量 u ̂_n 垂直于 u ̂_t 并指向曲率中心C,即: r_(C/P)=ρu ̂_n u ̂_n 和 u ̂_t
所形成的平面为密切平面,法向量: u ̂_b=u ̂_t×u ̂_n 曲率中心位于密切平面中。 ds=ρdϕ ϕ ̇=v/ρ

1.3 质量、力和牛顿万有引力定律 g=GM/r^2

γ 为飞行路径角,将地球看成一个平面时(即不考虑其球形影响): dγ=-dϕ 即: γ ̇=-ϕ ̇=-v/ρ
1.4 牛顿运动定律

F_合=ma I_合=∫_(t_1)^(t_2)▒Fdt M_(O_合 )=(dH_O)/dt ∫_(t_1)^(t_2)▒〖M_(O_合
) dt〗=H_(O_2 )-H_(O_1 ) H_O=r×mv

1.5 运动矢量的时间导数

模为定值的矢量 A 的时间导数: dA/dt=ω×A 以此推出: (d^2 A)/(dt^2 )
=d/dt (dA/dt)
=d/dt (ω×A)
=dω/dt×A+ω×dA/dt
=α×A+ω×(ω×A) 三次导数同理。

时变矢量 Q 的时间导数: dQ/dt=├ dQ/dt)_相对+Ω×Q 以此推出: (d^2 Q)/(dt^2 )
=d/dt ├ dQ/dt)_相对+dΩ/dt×Q+Ω×dQ/dt
&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值