在地学领域尤其是地理现象的空间关系的研究当中,空间异质性(Spatial Heterogeneity)一直是研究热点和重点之一。地理加权回归和地理探测器作为探寻地理现象空间异质性的有效方法,近年来广泛应用于地理现象空间异质性的研究当中,深受国内外许多学者的喜爱。但是,现有的研究在这两种方法的选择上并没有一个规范的标准,得到的结论也存在一定的局限性。针对这个问题,本文将分别介绍地理加权回归和地理探测器以及它们之间的联系和区别,希望能够为大家的后续研究提供一些启发和帮助。
地理加权回归(Geographically Weighted Regression,GWR)由Fortheringham 等人于1996年提出,旨在正确探测由于地理位置的变化引起的变量间的关系或者结构发生变化而导致的空间非平稳性(spatial nonstationarity)。相比于局域回归分析,GWR可以避免随机抽样和不同分区导致的区域交界区参数估计出现跳变对探测结果的影响。相比于变参数回归模型,GWR可以解决得到的参数不能进行统计检验和研究的问题的分层性质不明显的问题。并且由于该方法的简单易行,一经提出便得到了广泛关注和研究。
地理探测器(Geo Detector,GD)由王劲峰等人于2016年提出,是一种探测空间分层异质性(简称空间分异性),以及揭示其背后驱动因子的统计学方法。该方法包括分异及因子探测、交互作用探测、风险区探测和生态探测等四个探测器。其中,分异及因子探测探测的是因变量Y的空间分异性以及某探测因子X对Y的空间分异的解释度。由于该方法研究的是空间分异性,因此自变量的要求是类型值(如1,2,3,4,5 五种类别),而不是数量值(如0.1,0.2,0.3,0.4,0.5,...)。
GWR探测的是空间非平稳性,GD探测的是空间分异性,这两者都是空间异质性的重要体现。但是,GD依赖于空间分异性的假设,而在实际问题中,地理现象的空间分异性往往不是那么明显,这就导致地理探测器得到的结论有的时候并不完全可靠。对于GWR,不管空间分异性是否明显,其都能得到很好的应用。所以在实际研究当中,我们可以将两者结合起来,先利用GD对可能的影响因子进行分异及因子探测,筛选出显著性较高的因子,再利用GWR进一步分析各因子的解释力。