GEE必须会教程—一文教会你GEE下载影像数据的方法

一、基本流程

A.平台进入:网站搜索:https://developers.google.com/earth-engine,进入Google Earth Engine 官网平台(以下简称GEE平台),正常登录该平台需要利用邮箱进行申请,申请通过后可以正常登录该平台。

B.数据检索:在平台上点击“Dataset”,可以查看GEE平台上所有的数据集,此处选择“Landsat”数据,选择“Landsat9OLI/TIRS”数据集,选择大气层顶反射率数据集“Top of Atmosphere”数据集。

C.数据信息查看:具体查看该数据集的描述、波段信息、影像属性等等,以及平台上调用和访问的代码信息。

D.数据的下载:GEE上进行影像数据的下载一般可通过JavaScript和Python两个接口进行代码的编辑,一般的代码编写思路为导入研究区域→影像数据集的访问→影像数据的空间、时间和云量筛选→查看影像结果→代码调整→影像下载

图1

图2

二、下载流程

①导入研究区域;在ArcMap中导出县级行政区划数据,并在个人资产上上传家乡—江西省赣州市南康区的矢量shp文件。利用ee.FeatureCollection代码导入研究区域,作为影像数据筛选的参考范围。

var roi = ee.FeatureCollection("users/hesuixinya511/rongchang");

②数据调用和预处理:在GEE平台上,通过ee.ImageCollection代码访问Sentinel-2数据。根据研究区域边界,以及2020年的全年日期范围,筛选云量百分比小于0.05的卫星数据,并根据Sentinel-2的去云函数方法进行初步的去云处理。

function maskS2clouds(image) {
  var qa = image.select('QA60');
  // Bits 10 and 11 are clouds and cirrus, respectively.
  var cloudBitMask = 1 << 10;
  var cirrusBitMask = 1 << 11;
  // Both flags should be set to zero, indicating clear conditions.
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0)
      .and(qa.bitwiseAnd(cirrusBitMask).eq(0));
  return image.updateMask(mask).divide(10000);
}
var dataset = ee.ImageCollection('COPERNICUS/S2_HARMONIZED')
                  .filterDate('2020-01-01', '2020-12-31')
                  .filterBounds(roi)
                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 0.05))
                  .map(maskS2clouds);
print(dataset);

③查看影像:利用list命令生成影像列表,方便按照索引值进行可视化的显示,在对符合条件的影像进行逐一查看后,发现2020年3月15日的两景影像能够完全覆盖区域。

//生成影像列表
var list = dataset.toList(dataset.size());
var downImage = ee.Image(list.get(3));
var upImage = ee.Image(list.get(5));
var visualization = {
  min: 0.0,
  max: 0.3,
  bands: ['B4', 'B3', 'B2'],
};
Map.centerObject(roi,6);
Map.addLayer(upImage,visualization,"upImage");
Map.addLayer(downImage, visualization, 'downImage');
Map.addLayer(roi,{"color":"red"},"ROI");

④合成影像和下载:由于Sentinel-2数据不同的波段具有不同的分辨率,在下载前需要将同一分辨率(10m、20m、60m)的波段数据进行影像合成后,再编写下载的代码,设置好下载参数,在“Task”目录中完成Sentinel-2数据的下载即可。

//生成影像列表
var list = dataset.toList(dataset.size());
var downImage = ee.Image(list.get(3));
var upImage = ee.Image(list.get(5));
var visualization = {
  min: 0.0,
  max: 0.3,
  bands: ['B4', 'B3', 'B2'],
};
Map.centerObject(roi,6);
Map.addLayer(upImage,visualization,"upImage");
Map.addLayer(downImage, visualization, 'downImage');
Map.addLayer(roi,{"color":"red"},"ROI");
④合成影像和下载:由于Sentinel-2数据不同的波段具有不同的分辨率,在下载前需要将同一分辨率(10m、20m、60m)的波段数据进行影像合成后,再编写下载的代码,设置好下载参数,在“Task”目录中完成Sentinel-2数据的下载即可。
var downImage10 = downImage.select("B2","B3","B4","B8");
var downImage20 = downImage.select("B5","B6","B7","B8A","B11","B12");
var downImage60 = downImage.select("B1","B9","B10");
var upImage10 = upImage.select("B2","B3","B4","B8");
var upImage20 = upImage.select("B5","B6","B7","B8A","B11","B12");
var upImage60 = upImage.select("B1","B9","B10");
//下载影像
Export.image.toDrive({  
      image: downImage10,  
      description: "downImage10",//影像名称   
      fileNamePrefix: "Sentinel-2down10",  
      folder: "RongchangESA",  //文件夹名称 
      scale: 10,  
      region: roi,  
      maxPixels: 1e13,  
      crs: "EPSG:4326"  
  });
Export.image.toDrive({  
      image: downImage20,  
      description: "downImage20",//影像名称   
      fileNamePrefix: "Sentinel-2down20",  
      folder: "RongchangESA",  //文件夹名称 
      scale: 20,  
      region: roi,  
      maxPixels: 1e13,  
      crs: "EPSG:4326"  
  });
Export.image.toDrive({  
      image: downImage60,  
      description: "downImage60",//影像名称   
      fileNamePrefix: "Sentinel-2down60",  
      folder: "RongchangESA",  //文件夹名称 
      scale: 60,  
      region: roi,  
      maxPixels: 1e13,  
      crs: "EPSG:4326"  
  });
Export.image.toDrive({  
      image: upImage10,  
      description: "upImage10",//影像名称   
      fileNamePrefix: "Sentinel-2up10",  
      folder: "RongchangESA",  //文件夹名称 
      scale: 10,  
      region: roi,  
      maxPixels: 1e13,  
      crs: "EPSG:4326"  
  });
Export.image.toDrive({  
      image: upImage20,  
      description: "upImage20",//影像名称   
      fileNamePrefix: "Sentinel-2up20",  
      folder: "RongchangESA",  //文件夹名称 
      scale: 20,  
      region: roi,  
      maxPixels: 1e13,  
      crs: "EPSG:4326"  
  });
Export.image.toDrive({  
      image: upImage60,  
      description: "upImage60",//影像名称   
      fileNamePrefix: "Sentinel-2up60",  
      folder: "RongchangESA",  //文件夹名称 
      scale: 60,  
      region: roi,  
      maxPixels: 1e13,  
      crs: "EPSG:4326"  
  });

⑤将下载好的Sentinel-2影像数据和Landsat8数据分别在ENVI中进行加载,查看下载的影像是否无误。结果如下:

本期内容到这里就结束了,谢谢大家支持!

### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类型的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛型定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梧桐GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值