最近在研究联邦学习,又转到个性化领域,研究了联邦元学习,打算把最近学的东西总结一下。感觉元学习对于我这种基础不扎实的萌新来说有点难,到目前也才搞懂了MAML/(ㄒoㄒ)/~~
联邦学习(FL)
联邦学习(federated learning),只需要记住一句话:数据不动模型动,服务器将模型参数发给用户,用户本地训练完后返回更新后的参数,如此重复若干轮次。
元学习
可以看李宏毅老师的视频讲解,本文配图均来自该视频
引用论文MAML中的一句话介绍元学习:
The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples.
元学习即“学会学习”,一般的机器学习是通过反复训练学会一个模型参数,元学习是学会如何得到模型参数,例如MAML通过一次梯度下降就知道了模型最佳初始参数是什么。元学习大致上可以分类为learning good weight initializations,meta-models that generate the parameters of other models 以及learning transferable optimizers。其中MAML属于第一类。MAML学习一个好的初始化权重,从而在新任务上实现fast adaptation
如上图,传统的机器学习中,模型的初始参数、模型结构、优化算法、学习率等等超参数都需要我们提前设置,每次训练模型都要调参。那我们能不能让机器学会自己调参呢,如果机器看一眼数据集就知道最佳的初始参数是多少,将省去很多计算步骤与样本,这就是MAML
MAML
MAML全称 模型无关元学习,Model-Agnostic