8、多分类问题

(1)在处理手写数字识别时,要把所有数据集分为10类,这10类的概率之和为1,每一类的概率值大等0,为满足上述条件,引入softmax函数,因为softmax函数可以输出一个分布,每个输出值都大等0,输出值和为1

(2)处理多分类问题时,前面所有激活函数用sigmoid函数,最后一层用softmax函数

softmax函数:指数的幂运算结果大于0,k个分类的值输出为1

 (3)多分类问题用NLLLoss损失函数,在softmax层输出后做log计算,然后进入损失函数-ylogy^,损失函数中的log不做计算

(4)交叉熵损失和NLLLoss的区别:

 

(5)神经网络最后一层不做激活,因为损失函数torch.nn.CrossEntropyLoss中包含了softmax

 (6)softmax函数处理手写数字识别的代码如下:

#1、prepare dataset
import  torch
from  torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim


batch_size = 64
#读图像时用pil,神经网络希望输入的数值比较小,在[-1,1]之间,遵循正态分布
#把[0.255]转变为[0,1]
#R、G、B各是一个通道channel用c表示通道
#图像张量一般是WxHxC,在pytorch中需要转为CxWxH


transform = transforms.Compose([
    # convert the PIL Image to tensor,单通道变为多通道
    transforms.ToTensor(),
    #数据标准化,切换到(0.1)分布,均值mean和标准差std,对MNIST所有像素值计算的结果
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='./mnist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          shuffle=True,
                          batch_size=batch_size)

test_dataset = datasets.MNIST(root='./mnist/',
                               train=False,
                               download=True,
                               transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         shuffle=False,
                         batch_size=batch_size
                         )
#2、Design model using Class
#激活层用Relu

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        # view改变张量的形状
        x = x.view(-1, 784)#-1自动计算N,N是有多少个样本,Nx784的矩阵
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)

model = Net()
#最后一层不做激活
#3、construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
#带冲量的梯度下降,冲量可以优化训练过程
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

#4、Training and Test
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss:%.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))

if __name__ =='__main__':
    for epoch in range(10):
        train(epoch)
        test()

输出结果:

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多分类问题的混淆矩阵是一种用于评估分类模型性能的工具。它可以帮助我们了解模型在不同类别上的分类情况。混淆矩阵的每一行代表了模型预测的类别,每一列代表了实际的类别。矩阵中的每个元素表示了模型将一个类别预测为另一个类别的次数。 下面是一个示例来演示多分类问题的混淆矩阵: 假设我们有一个三分类问题,类别分别为A、B和C。我们的模型对一组样本进行了预测,并得到了以下结果: - 类别A的样本有10个,模型将其中8个正确地预测为A,1个预测为B,1个预测为C。 - 类别B的样本有15个,模型将其中12个正确地预测为B,2个预测为A,1个预测为C。- 类别C的样本有20个,模型将其中18个正确地预测为C,1个预测为A,1个预测为B。 根据以上信息,我们可以构建出混淆矩阵如下: | | 预测为A | 预测为B | 预测为C | |------|---------|---------|---------| | 实际A | 8 | 1 | 1 | | 实际B | 2 | 12 | 1 | | 实际C | 1 | 1 | 18 | 通过观察混淆矩阵,我们可以得到以下信息: - 类别A的样本中,有8个被正确地预测为A,1个被错误地预测为B,1个被错误地预测为C。 - 类别B的样本中,有12个被正确地预测为B,2个被错误地预测为A,1个被错误地预测为C。 - 类别C的样本中,有18个被正确地预测为C,1个被错误地预测为A,1个被错误地预测为B。 通过混淆矩阵,我们可以计算出模型在每个类别上的准确率、召回率和F1值等指标,以评估模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值