ZOJ 3488 Conic Section【】



Conic Section

Time Limit: 2 Seconds       Memory Limit: 65536 KB

The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone. For a plane perpendicular to the axis of the cone, a circle is produced. For a plane that is not perpendicular to the axis and that intersects only a single nappe, the curve produced is either an ellipse or a parabola. The curve produced by a plane intersecting both nappes is a hyperbola.

conic sectionequation
circle x2+y2=a2
ellipse x2/a2+y2/b2=1
parabola y2=4ax
hyperbola x2/a2-y2/b2=1
Input

There are multiple test cases. The first line of input is an integer T ≈ 10000 indicating the number of test cases.

Each test case consists of a line containing 6 real numbers abcdef. The absolute value of any number never exceeds 10000. It's guaranteed that a2+c2>0b=0, the conic section exists and it is non-degenerate.

Output

For each test case, output the type of conic section ax2+bxy+cy2+dx+ey+f=0. See sample for more details.

Sample Input
5
1 0 1 0 0 -1
1 0 2 0 0 -1
0 0 1 1 0 0
1 0 -1 0 0 1
2 0 2 4 4 0
Sample Output
circle
ellipse
parabola
hyperbola
circle


思路:henkaui有了下面的思路。。可是把怎么判断圆形的搞错了。。


#include<cstdio>
#include<math.h>
#include<cstring>
#include<climits>
#include<string>
#include<queue>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<climits>
#include<string>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
#define rep(i,j,k)for(i=j;i<k;i++)
#define per(i,j,k)for(i=j;i>k;i--)
#define MS(x,y)memset(x,y,sizeof(x))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
#define abs(x) (x>0?x:-x)
const int INF=0x7ffffff;
const ll MAX=1e18;

int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        double a,b,c,d,e,f;
        scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
        if(a==0||c==0){printf("parabola\n");continue;}
        if(a==c){printf("circle\n");continue;}
        if(a*c<0)printf("hyperbola\n");
        else printf("ellipse\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值