K均值算法(K-means)聚类

主要知识点

  1. K-means算法
  2. KMeans(n_clusters=3)
  3. K-means的中心点
  4. centers = kmeans.cluster_centers_
  5. 坐标轴中文显示问题
  6. 坐标轴字体、负号还原问题
  7. 3D绘图

    1. from mpl_toolkits.mplot3d import Axes3D
    2. 建立坐标系
    3. ax = plt.subplot(projection=’3d’)
  8. make_blobs生成有中心点的数据
    centers=3 中心点
    cluster_std =[0.5, 2, 10] 标准差

一、K-means算法原理

1)概念

一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中。

K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。

K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法

这里写图片描述

2)算法示例

这个算法其实很简单,如下图所示:
这里写图片描述

从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。

然后,K-Means的算法如下:

随机在图中取K(这里K=2)个种子点。
然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。
这个算法很简单,重点说一下“求点群中心的算法”:欧氏距离(Euclidean Distance):差的平方和的平方根
这里写图片描述

K-Means主要最重大的缺陷——都和初始值有关:
K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)

K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)

3)K-Means算法步骤

  1. 从数据中选择k个对象作为初始聚类中心;
  2. 计算每个聚类对象到聚类中心的距离来划分;
  3. 再次计算每个聚类中心
  4. 计算标准测度函数,直到达到最大迭代次数,则停止,否则,继续操作。
  5. 确定最优的聚类中心

4)K-Means算法应用

看到这里,你会说,K-Means算法看来很简单,而且好像就是在玩坐标点,没什么真实用处。而且,这个算法缺陷很多,还不如人工呢。是的,前面的例子只是玩二维坐标点,的确没什么意思。但是你想一下下面的几个问题:

1)如果不是二维的,是多维的,如5维的,那么,就只能用计算机来计算了。

2)二维坐标点的X,Y 坐标,其实是一种向量,是一种数学抽象。现实世界中很多属性是可以抽象成向量的,比如,我们的年龄,我们的喜好,我们的商品,等等,能抽象成向量的目的就是可以让计算机知道某两个属性间的距离。如:我们认为,18岁的人离24岁的人的距离要比离12岁的距离要近,鞋子这个商品离衣服这个商品的距离要比电脑要近,等等。

4)常见问题

  1. k值不合适
  2. 数据有偏差
  3. 样本数量差别很大
  4. 数据标准差差别很大

5)解决方法

K值太重要了
K-Means++算法
原理就是将K的值 ++ 一个一个试K的值

二、聚类实例

from sklearn.cluster import KMeans

1)使用make_blobs生成数据

导包

from sklearn.datasets import make_blobs
#参数:
# n_samples=100  样本数量
# n_features=2   特征数量
# centers=3      中心点

#返回值:
# X_train:  测试集
# y_train: 特征值  

X_train,y_train = make_blobs(n_samples=100, n_features=2, centers=3)

将生成的数据绘制出来

plt.scatter(X_train[:,0],X_train[:,1],c=y_train)

这里写图片描述

2)建立模型并训练

#参数
# n_clusters  将预测结果分为几簇

kmeans = KMeans(n_clusters=3)  # 获取模型
kmeans.fit(X_train)  #这里不需要给他答案 只把要分类的数据给他 即可

3)使用相同的数据进行预测

y_ = kmeans.predict(X_train)

4)原数据特征值与预测结果比较

plt.scatter(X_train[:,0],X_train[:,1],c=y_train) # 预测结果
plt.scatter(X_train[:,0],X_train[:,1],c=y_)  #原结果

这里写图片描述

三、足球数据预测

使用K-Means进行数据处理,对亚洲球队进行分组,分三组

绘制3D图形

1)导包

from mpl_toolkits.mplot3d import Axes3D

2)获取数据

列名修改为:”国家”,”2006世界杯”,”2010世界杯”,”2007亚洲杯”

df = pd.read_csv('./data/AsiaFootball.csv',header=None)
df.columns = ["国家","2006世界杯","2010世界杯","2007亚洲杯"]

提取训练数据,将国家名去掉

data = df.iloc[:,1:]  # 所有行都要 从1开始 到最后 (如果是取到最后 冒号后面的可以省略)
data

3)建立模型并训练

kmeans = KMeans(n_clusters=3)
kmeans.fit(data)  #这里训练数据只传入训练数据,不用传入结果集

4)预测结果

1、训练后用模型预测

kmeans.predict(data)

2、训练并直接预测

和上面的效果一样

y_ = kmeans.fit_predict(data)

5)直观查看分好组的国家

df[y_==0]['国家']

1    日本
2    韩国
Name: 国家, dtype: object
df[y_==1]['国家']

0      中国
5     伊拉克
6     卡塔尔
7     阿联酋
9      泰国
10     越南
11     阿曼
14     印尼
Name: 国家, dtype: object
df[y_==2]['国家']

3         伊朗
4         沙特
8     乌兹别克斯坦
12        巴林
13        朝鲜
Name: 国家, dtype: object

6)for循环打印出分为三类的国家

for i in range(3):
    s = df[y_==i]['国家']
    for country in s:
        print(country)
    print('\n')

日本
韩国


中国
伊拉克
卡塔尔
阿联酋
泰国
越南
阿曼
印尼


伊朗
沙特
乌兹别克斯坦
巴林
朝鲜

7)绘制三维立体图形

1、导包

from mpl_toolkits.mplot3d import Axes3D

2、建立坐标系

ax = plt.subplot(projection='3d')

这里写图片描述

3、画出坐标数据

坐标轴中文显示问题

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']  #中文显示问题

坐标轴字体还原问题
坐标轴负号还原问题

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['STXINWEI']  # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题

画出坐标点,并设置坐标轴数据

plt.figure(figsize=(12,8))
ax = plt.subplot(projection='3d')
x = df['2006世界杯']
y = df['2010世界杯']
z = df['2007亚洲杯']
ax.scatter3D(x,y,z,c=y_,s=100,alpha=1)
ax.set_xlabel('2006世界杯')
ax.set_ylabel('2010世界杯')
ax.set_zlabel('2007亚洲杯')

这里写图片描述

8)K-means的中心点

centers = kmeans.cluster_centers_
centers

array([[22.5, 12. ,  3.5],
       [50. , 47.5,  7.5],
       [34.6, 38.4,  7.6]])

9)将分类的中心点也画到图上

plt.figure(figsize=(12,8))
ax = plt.subplot(projection='3d')
x = df['2006世界杯']
y = df['2010世界杯']
z = df['2007亚洲杯']
ax.scatter3D(x,y,z,c=y_,s=100,alpha=1)
ax.set_xlabel('2006世界杯')
ax.set_ylabel('2010世界杯')
ax.set_zlabel('2007亚洲杯')
ax.scatter3D(centers[:,0],centers[:,1],centers[:,2],c='r')

这里写图片描述

四、聚类实践与常见错误

1)使用make_blobs创建样本点

# 样本量 n_samples=100
# 特征量 n_features=2
# 中心点 centers=3
X_train,y_train = make_blobs(n_samples=1500, n_features=2, centers=3)

2)第一种错误,k值不合适,make_blobs默认中心点三个

1、创建训练集并绘图

X_train,y_train = make_blobs(n_samples=1500, n_features=2, centers=3)

画图查看绘制的点

plt.scatter(X_train[:,0],X_train[:,1],c=y_train)

这里写图片描述

2、预测结果并绘图

kmeans = KMeans(n_clusters=4)
y_ = kmeans.fit_predict(X_train)  #这里预测有4个中心点

plt.scatter(X_train[:,0],X_train[:,1],c=y_train)

这里写图片描述

3)第二种错误:标准差cluster_std不相同

1、创建训练集并绘图

#参数
# cluster_std 各个中心的标准差
X_train,y_train = make_blobs(n_samples=500, n_features=2, centers=3, cluster_std=[0.5,2,10])  

绘制训练集

plt.scatter(X_train[:,0],X_train[:,1],c=y_train)

这里写图片描述

2、预测结果并绘图

kmeans = KMeans(n_clusters=3)
y_ = kmeans.fit_predict(X_train)

plt.scatter(X_train[:,0],X_train[:,1],c=y_)

这里写图片描述

4)第三种错误,数据有偏差

1、让样本产生偏差

使用点乘使样本产生偏差

test = [
    [1,2],
    [3,4],
    [5,6]
]
trans = [
    [0.6,-0.6],
    [-0.4,0.8]
]
np.dot(test,trans)


array([[-0.2,  1. ],
       [ 0.2,  1.4],
       [ 0.6,  1.8]])

可以看出 得到的数据与原数据相比缩小了

2、对产生的数据造成偏差

trans = [
    [0.6,-0.6],
    [-0.4,0.8]
]
X_train2 = np.dot(X_train,trans)

绘制出偏差后的数据

这里写图片描述

3、对偏差数据进行训练预测

kmeans = KMeans(n_clusters=3)
y_ = kmeans.fit_predict(X_train2)
plt.scatter(X_train2[:,0],X_train2[:,1],c=y_)

这里写图片描述

5)第四个错误:样本数量不同

1、创建数据集

X,y = make_blobs(n_samples=1500, n_features=2, centers=3)

2、数据处理

将分make_blobs好的数据各取不等份样本,组成一组新的数据集

# 创建训练集
X1 = X[y==0]        # X1中的这些点 目标值都是0
X2 = X[y==1][:100]  # X2中的这些点 目标值都是1
X3 = X[y==2][:10]   # X3中的这些点 目标值都是2

# 将三个合为一个训练集
X = np.concatenate((X1,X2,X3))
创建结果集
# 前500个为0  再来100个1  再来10个2
y_train = [0]*500+[1]*100+[2]*10

绘制创建出来的点

plt.scatter(X[:,0],X[:,1],c=y_train)

这里写图片描述

3、使用模型训练并预测

kmeans = KMeans(n_clusters=3)
y_ = kmeans.fit_predict(X)
# 绘图比较与原数据的差异
plt.scatter(X[:,0],X[:,1],c=y_)

这里写图片描述

  • 101
    点赞
  • 472
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
### 回答1: K-Means 聚类算法是一种常用的无监督学习算法,它可以将数据集划分为 K 个不同的类别,其中 K 是预先设定的。在 K-Means 算法中,我们需要指定 K 值和距离计算方法,然后通过迭代的方式不断调整聚类中心,直到达到某个停止准则为止。 下面我们以鸢尾花数据集为例,来实现 K-Means 聚类算法。 首先,我们需要导入数据集并进行预处理。这里我们使用 sklearn 中的 load_iris 函数来加载数据集,并使用 MinMaxScaler 对数据进行归一化处理: ``` python from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler # 加载数据集 iris = load_iris() X = iris.data # 数据归一化 scaler = MinMaxScaler() X = scaler.fit_transform(X) ``` 接下来,我们需要实现 K-Means 算法。这里我们使用 scikit-learn 中的 KMeans 类来实现: ``` python from sklearn.cluster import KMeans # 设置 K 值 k = 3 # 初始化 KMeans 模型 kmeans = KMeans(n_clusters=k) # 训练模型并预测结果 y_pred = kmeans.fit_predict(X) ``` 最后,我们可以使用 Matplotlib 来可视化聚类结果: ``` python import matplotlib.pyplot as plt # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("K-Means Clustering") plt.show() ``` 运行以上代码,即可得到鸢尾花数据的聚类结果。 ### 回答2: K-Means聚类算法是一种常用的无监督学习方法,能够对数据进行聚类。在K-Means算法中,通过计算数据点与聚类中心的距离,将数据点归类到距离最近的聚类中心,从而实现数据的聚类。 鸢尾花数据是机器学习中常用的数据集之一,包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。这些样本被分为三个类别,分别是山鸢尾、变色鸢尾和维吉尼亚鸢尾。 使用K-Means聚类算法对鸢尾花数据进行聚类的过程如下: 1. 随机选择K个初始聚类中心。K代表要将数据聚成的类别数,这里我们选择K=3,即将鸢尾花数据聚成3个类别。 2. 对每个数据点,计算其与各个聚类中心的距离,并将其归类到距离最近的聚类中心。 3. 更新每个聚类中心的位置,将其移动到所归类数据点的平均位置。 4. 重复步骤2和3,直到聚类中心不再发生变化或达到预定的迭代次数。 通过上述步骤,可以将鸢尾花数据聚类成3个类别。每个类别中的数据点具有相似的特征,并且与其他类别中的数据点的特征有较大的区别。 K-Means聚类算法的优点是简单易实现,计算效率高。然而,这种算法对初始聚类中心的选择较为敏感,可能会收敛到局部最优解。因此,在应用K-Means算法时,需要进行多次实验,以避免得到不理想的聚类结果。同时,K-Means算法对于离群点比较敏感,离群点可能会影响聚类结果的准确性。 ### 回答3: K-Means 聚类算法是一种常用的无监督学习算法,主要用于将数据集中的样本划分成不同的簇。下面以实现鸢尾花数据的聚类为例进行解释。 首先,我们需要加载鸢尾花数据集,该数据集包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。我们将这些样本表示为一个150x4的矩阵。 然后,我们需要确定簇的数量 k,即要将数据集划分成几个簇。在这里,我们可以根据经验或者领域知识来选择一个合适的值。 接下来,我们需要初始化 k 个簇的中心点。可以随机从数据集中选取 k 个样本作为初始的簇中心点。 然后,对于每个样本,我们计算其与各个簇中心点的距离,并将其分配给距离最近的簇中心点所在的簇。 接着,我们更新每个簇的中心点,即将每个簇中的样本的特征均值作为新的簇中心点。 最后,我们重复执行以上两个步骤,直到簇中心点不再发生变化,或者到达预定的迭代次数。 完成聚类后,我们可以根据簇的中心点和每个样本所属的簇来进行结果的分析和可视化。例如,可以绘制不同簇中心点的特征值分布图,以及将样本点按簇的标签进行颜色分类的散点图等。 K-Means 聚类算法能够有效地将数据集划分为不同的簇,实现了对样本的聚类。在鸢尾花数据集这个例子中,我们可以根据花萼和花瓣的特征值将鸢尾花分为不同的类别,从而更好地了解这些花的分类情况。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值