迷宫最短路劲-BFS

给定一个大小为N*M的迷宫,由通道('.')和墙壁('#')组成,其中通道S表示起点,通道G表示终点,每一步移动可以达到上下左右中不是墙壁的位置。试求出起点到终点的最小步数。(本题假定迷宫是有解的)(N,M<=100)

样例输入:

10 10

样例输出:

22

个人觉得这个例题很好地表现了广度优先搜索是如何与队列先进先出(FIFO)的思想联系起来的,通过不断取得某个状态后能够达到的所有状态并将其加入队列, 并且由于队列本身的特性先加入队列的状态总是先得到处理,这样就达到了一个目的:总是先将需要转移次数更少的状态进行分析处理,换句话说就是总是取得了这个状态的树中更接近根部的节点,又或者是总是让搜索树的广度得到尽可能增加。

在这个问题中,找到从起点到终点的最短路径其实就是一个建立队列的过程:

1.从起点开始,先将其加入队列,设置距离为0;

2.从队列首端取出位置,将从这个位置能够到达的位置加入队列,并且让这些位置的距离为上一个位置的距离加上1;

3.循环2直到将终点添加到队列中,这说明我们已经找到了路径;

注意到在这个过程中,每次处理的位置所对应的距离是严格递增的,因此一旦找到终点,当时的距离就是最短距离;

同样基于这个原因,搜索可移动到的位置所使用的判断条件中不仅仅是不碰墙壁、不超过边界,还有一个就是没有到达过,因为如果已经到达了这个位置,这说明已经有更短的路径到达这个位置,这次到达这个位置的路径是更差的,不可能得到更好的最终解。

#include <iostream>

#include <queue>

using namespace std;

const int MAX_N = 100;

const int MAX_M = 100;

const int INF = 0x3f3f3f3f;//随意放置一个很大的数,用来标记

typedef pair<int, int> P;

char maze[MAX_N][MAX_M + 1];

int N, M;

int sx, sy; //起点的位置

int gx, gy; //终点的位置

 

int d[MAX_N][MAX_M];//储存起点到某一点的距离

int dx[4] = { 1,0,-1,0 }, dy[4] = { 0,1,0,-1 }; //表明每次x和y方向的位移

 

void bfs()

{

	queue<P> que;

	for (int i = 0; i < N; i++)

		for (int j = 0; j < M; j++)

			d[i][j] = INF;	//初始化所有点的距离为INF

	que.push(P(sx, sy));

	d[sx][sy] = 0;	//从起点出发将距离设为0,并放入队列首端

 

	while (que.size()) //题目保证有路到终点,所以不用担心死循环

	{

		P p = que.front(); que.pop();//弹出队首元素

		int i;

		for (i = 0; i < 4; i++)

		{

			int nx = p.first + dx[i];

			int ny = p.second + dy[i];//移动后的坐标

			//判断可移动且没到过

			if (0 <= nx && nx < N && 0 <= ny && ny < M && maze[nx][ny] != '#'&&d[nx][ny] == INF)

//之前到过的话不用考虑,因为距离在队列中递增,肯定不会获得更好的解
			{

				que.push(P(nx, ny));	//可以移动则设定距离为之前加一,放入队列
				d[nx][ny] = d[p.first][p.second] + 1; 

				if(nx==gx && ny==gy) break;
                        }

		}

		if(i!=4) break; //已经走到终点,推出循环

	}

}

 

int main()

{

	cin>>N>>M;

	for (int i = 0; i < N; i++)

		cin>>maze[i];

	for (int i = 0; i < N; i++)

		for (int j = 0; j < M; j++)

		{

			if (maze[i][j] == 'S')

			{
				sx = i; sy = j;
			}

			if (maze[i][j] == 'G')
			{
				gx = i; gy = j;
			}

		}

	bfs();

	cout<<d[gx][gy]<<endl;


	return 0;

}

 

Floyd算法是一种多源最短路径算法,用于计算图中任意两个顶点之间的最短路径。它通过动态规划的思想逐步更新路径的长度来计算最短路径。 Floyd算法的基本思想是通过一个中间顶点集合,逐个考察这个集合中的顶点,看是否可以通过这个中间顶点缩短路径长度。具体步骤如下: 1. 初始化一个二维数组D,其中D[i][j]表示顶点i到顶点j的最短路径长度。如果i和j之间有边相连,则D[i][j]为边的权值,否则为无穷大。 2. 对于每一个中间顶点k,考虑所有的一对顶点i和j,更新D[i][j]为D[i][k] + D[k][j]与D[i][j]的较小值。 3. 重复步骤2,不断更新D数组,直到所有顶点都被考虑为中间顶点。 4. 最后得到的D数组中,D[i][j]表示顶点i到顶点j的最短路径长度。 Floyd算法的时间复杂度为O(V^3),其中V为图中顶点的个数。因此,Floyd算法适用于顶点数不太多的图。 需要注意的是,Floyd算法可以处理有向图和带负权边的图,但不能处理带有负权环的图,因为负权环会导致最短路径不存在。 总结起来,Floyd算法是一种多源最短路径算法,通过动态规划的思想逐步更新路径长度,可以计算出图中任意两个顶点之间的最短路径长度。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [图算法——最短路径(Floyd算法)](https://blog.csdn.net/qq_61959780/article/details/129363941)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [最短路径(Dijkstra算法和Floyd算法)](https://blog.csdn.net/weixin_44267007/article/details/119770562)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值