数据分析36计(11):如何用贝叶斯概率准确提供业务方营销转化率

本文介绍了如何使用贝叶斯概率来准确评估业务方的营销转化率。seeder公司尝试在德克萨斯州推广电动踏板车,通过小册子营销,转化率为9/23。传统的频率学派方法可能不适用,而贝叶斯方法能够更好地处理小样本不确定性。文章详细阐述了数据、生成模型和先验概率在量化转化率不确定性中的作用。
摘要由CSDN通过智能技术生成

点击上面查看该专辑往期文章????????????

1. 背景

seeder是一家在加利福尼亚州销售电动踏板车的公司,他们正试图通过在德克萨斯州开拓新市场,seeder的营销团队利用印刷媒体,并设计了一本小册子以吸引新客户,他们将小册子分发给23个人,最终完成9笔订单。

seeder管理层想知道是,印刷媒体在推销新的电动滑板车方面有多好?如果公司继续制作大量小册子,能预计有多少的转化率?首先,一般的商业分析师会想到用频率学派中的频率代表概率的方法,转化率等于订单数除以分发的总数为9/23=39%。

但是这里的小样本不适用于上面的计算,通过贝叶斯方法计算概率能更好的得出准确描述业务状态的结果。

2. 使用贝叶斯概率来量化不确定性

为了能量化业务中转化率的不确定性,我们需要解决三件事:

  • 数据

  • 生成模型

  • 先验概率

数据

本案例中的数据将来自我们进行的初步研究。我们知道,在向这本小册子展示的23家德克萨斯人中,有9家被转化为客户。

生成模型

生成模型传递某些参数,例如转化率,以便该模型基于该参数模拟业务数据。例如,我们可以假设转化率为40%,然后向随机选择的50个德克萨斯州人展示手册。根据我们假定的转化率,生成模型将估算出将要进行的20笔销售。现在基于假设的生成模型,已知业务数据,反向求解生成模型&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值