Machine Learning-模型评估与调参 ——ROC曲线

本文介绍了ROC曲线在机器学习模型评估中的应用。ROC曲线显示了分类器的真正率与假正率之间的关系,有助于比较不同分类器的性能。通过设置不同阈值,计算FPR和TPR,可以绘制ROC曲线,其下方面积AUC越大,分类性能越好。文章还提供了ROC曲线的绘制方法和代码实现。
摘要由CSDN通过智能技术生成

机器学习系列专栏

选自 Python-Machine-Learning-Book On GitHub

作者:Sebastian Raschka

翻译&整理 By Sam

这篇文章介绍一下我们在评估模型的时候常常用到的ROC曲线。

一、基础概念

如果需要理解ROC曲线,那你就需要先了解一下混淆矩阵了,具体的内容可以查看一下之前的文章,这里重点引入2个概念:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值